摘要:1.判断及证明函数单调性的基本步骤:假设-作差-变形-判断
网址:http://m.1010jiajiao.com/timu_id_4441873[举报]
设函数f(x)的定义域为R,当x<0时f(x)>1,且对任意的实数x,y∈R,有
(Ⅰ)求f(0),判断并证明函数f(x)的单调性;
(Ⅱ)数列满足
,且
,数列
满足
w.w.w.k.s.5.u.c.o.m
①求数列通项公式。
②求数列的前n项和Tn的最小值及相应的n的值.
仔细阅读下面问题的解法:
设A=[0, 1],若不等式21-x-a>0在A上有解,求实数a的取值范围。
解:由已知可得 a < 21-x
令f(x)= 21-x ,∵不等式a <21-x在A上有解,
∴a <f(x)在A上的最大值.
又f(x)在[0,1]上单调递减,f(x)max =f(0)=2. ∴实数a的取值范围为a<2.
研究学习以上问题的解法,请解决下面的问题:
(1)已知函数f(x)=x2+2x+3(-2≤x≤-1),求f(x)的反函数及反函数的定义域A;
(2)对于(1)中的A,设g(x)=,x∈A,试判断g(x)的单调性(写明理由,不必证明);
(3)若B ={x|>2x+a–5},且对于(1)中的A,A∩B≠F,求实数a的取值范围。