网址:http://m.1010jiajiao.com/timu_id_425771[举报]
已知向量(),向量,,
且.
(Ⅰ)求向量; (Ⅱ)若,,求.
【解析】本试题主要考查了向量的数量积的运算,以及两角和差的三角函数关系式的运用。
(1)问中∵,∴,…………………1分
∵,得到三角关系是,结合,解得。
(2)由,解得,,结合二倍角公式,和,代入到两角和的三角函数关系式中就可以求解得到。
解析一:(Ⅰ)∵,∴,…………1分
∵,∴,即 ① …………2分
又 ② 由①②联立方程解得,,5分
∴ ……………6分
(Ⅱ)∵即,, …………7分
∴, ………8分
又∵, ………9分
, ……10分
∴.
解法二: (Ⅰ),…………………………………1分
又,∴,即,①……2分
又 ②
将①代入②中,可得 ③ …………………4分
将③代入①中,得……………………………………5分
∴ …………………………………6分
(Ⅱ) 方法一 ∵,,∴,且……7分
∴,从而. …………………8分
由(Ⅰ)知, ; ………………9分
∴. ………………………………10分
又∵,∴, 又,∴ ……11分
综上可得 ………………………………12分
方法二∵,,∴,且…………7分
∴. ……………8分
由(Ⅰ)知, . …………9分
∴ ……………10分
∵,且注意到,
∴,又,∴ ………………………11分
综上可得 …………………12分
(若用,又∵ ∴ ,
查看习题详情和答案>>
已知函数f(x)=sin(ωx+φ) (0<φ<π,ω>0)过点,函数y=f(x)图象的两相邻对称轴间的距离为.
(1) 求f(x)的解析式;
(2) f(x)的图象向右平移个单位后,得到函数y=g(x)的图象,求函数g(x)的单调递减区间.
【解析】本试题主要考查了三角函数的图像和性质的运用,第一问中利用函数y=f(x)图象的两相邻对称轴间的距离为.得,所以
第二问中,,
可以得到单调区间。
解:(Ⅰ)由题意得,,…………………1分
代入点,得…………1分
, ∴
(Ⅱ), 的单调递减区间为,.
查看习题详情和答案>>
下列叙述中,正确的个数是
①集合中最小的数是1;
②若-aN,则a∈N;
③若a∈N*,b∈N,则a+b的最小值是2;
④方程x2-4x=-4的解集是{2,2}.
[ ]
A.0个 B.1个 C.2个 D.3个 查看习题详情和答案>>本题(1)、(2)、(3)三个选答题,每小题7分,请考生任选2题作答,满分14分,如果多做,则按所做的前两题计分.作答时,先用2B铅笔在答题卡上把所选题目对应的题号涂黑,并将所选题号填入括号中。K^S*5U.C#O
(1)(本小题满分7分)选修4-2:矩阵与变换
已知向量=,变换T的矩阵为A=,平面上的点P(1,1)在变换T
作用下得到点P′(3,3),求A4.
(2)(本小题满分7分)选修4-4:坐标系与参数方程
直线与圆(>0)相交于A、B两点,设
P(-1,0),且|PA|:|PB|=1:2,求实数的值
(3)(本小题满分7分)选修4-5:不等式选讲K^S*5U.C#O
对于x∈R,不等式|x-1|+|x-2|≥2+2恒成立,试求2+的最大值。