摘要:(1)已知函数.求证:为曲线的“上夹线 . (2)观察下图:
网址:http://m.1010jiajiao.com/timu_id_390907[举报]
已知函数f(x)=ax3+bx2+cx+d在x=0处取得极值,曲线y=f(x)过原点O和点P(-1,2),若曲线y=f(x)在P处的切线l与直线y=2x的夹角为45°,且l的倾斜角为钝角.
(1)求f(x)的解析式;
(2)若y=f(x)在区间[2m-1,m+1]上是增函数,求实数m的取值范围;
(3)若x1,x2∈[-1,1],求证:|f(x1)-f(x2)|≤4.
查看习题详情和答案>>
(1)求f(x)的解析式;
(2)若y=f(x)在区间[2m-1,m+1]上是增函数,求实数m的取值范围;
(3)若x1,x2∈[-1,1],求证:|f(x1)-f(x2)|≤4.
已知函数取得极小值.
(Ⅰ)求a,b的值;
(Ⅱ)设直线. 若直线l与曲线S同时满足下列两个条件:
(1)直线l与曲线S相切且至少有两个切点;
(2)对任意x∈R都有. 则称直线l为曲线S的“上夹线”.试证明:直线是曲线的“上夹线”.
查看习题详情和答案>>已知函数取得极小值.
(Ⅰ)求a,b的值;
(Ⅱ)设直线. 若直线l与曲线S同时满足下列两个条件:
(1)直线l与曲线S相切且至少有两个切点;
(2)对任意x∈R都有. 则称直线l为曲线S的“上夹线”.试证明:直线是曲线的“上夹线”.
查看习题详情和答案>>