摘要:因为面.所以.则平面.
网址:http://m.1010jiajiao.com/timu_id_345774[举报]
如图,在四棱锥中,⊥底面,底面为正方形,,,分别是,的中点.
(I)求证:平面;
(II)求证:;
(III)设PD=AD=a, 求三棱锥B-EFC的体积.
【解析】第一问利用线面平行的判定定理,,得到
第二问中,利用,所以
又因为,,从而得
第三问中,借助于等体积法来求解三棱锥B-EFC的体积.
(Ⅰ)证明: 分别是的中点,
,. …4分
(Ⅱ)证明:四边形为正方形,.
, .
, ,
.,. ………8分
(Ⅲ)解:连接AC,DB相交于O,连接OF, 则OF⊥面ABCD,
∴
查看习题详情和答案>>
下列推理正确的是( )
A.因为正方形的对角线互相平分且相等,所以若一个四边形的对角线互相平分且相等,则此四边形是正方形
B.空间不共面的三条直线a,b,c,如果a⊥b,b⊥c,那么a⊥c
C.因为当x≤0,x(x-1)+1>0;当x≥1时,x(x-1)+1>0,所以不等式x(x-1)+1>0在R上恒成立
D.如果a>b,c>d,则a-d>b-c
查看习题详情和答案>>
A.因为正方形的对角线互相平分且相等,所以若一个四边形的对角线互相平分且相等,则此四边形是正方形
B.空间不共面的三条直线a,b,c,如果a⊥b,b⊥c,那么a⊥c
C.因为当x≤0,x(x-1)+1>0;当x≥1时,x(x-1)+1>0,所以不等式x(x-1)+1>0在R上恒成立
D.如果a>b,c>d,则a-d>b-c
查看习题详情和答案>>
给出以下命题:
(1)α,β表示平面,a,b,c表示直线,点M;若a?α,b?β,α∩β=c,a∩b=M,则M∈c;
(2)平面内有两个定点F1(0,3),F2(0-3)和一动点M,若||MF1|-|MF2||=2a(a>0)是定值,则点M的轨迹是双曲线;
(3)在复数范围内分解因式:x2-3x+5=(x-
)(x-
);
(4)抛物线y2=12x上有一点P到其焦点的距离为6,则其坐标为P(3,±6).
以上命题中所有正确的命题序号为
查看习题详情和答案>>
(1)α,β表示平面,a,b,c表示直线,点M;若a?α,b?β,α∩β=c,a∩b=M,则M∈c;
(2)平面内有两个定点F1(0,3),F2(0-3)和一动点M,若||MF1|-|MF2||=2a(a>0)是定值,则点M的轨迹是双曲线;
(3)在复数范围内分解因式:x2-3x+5=(x-
3+
| ||
2 |
3-
| ||
2 |
(4)抛物线y2=12x上有一点P到其焦点的距离为6,则其坐标为P(3,±6).
以上命题中所有正确的命题序号为
(1)(3)(4)
(1)(3)(4)
.