摘要:又(当).
网址:http://m.1010jiajiao.com/timu_id_336626[举报]
(甲)如图,已知斜三棱柱ABC-A1B1C1的侧面A1C⊥底面ABC,∠ABC=90°,BC=2,AC=2
,又AA1⊥A1C,AA1=A1C.
(1)求侧棱A1A与底面ABC所成的角的大小;
(2)求侧面A1B与底面所成二面角的大小;
(3)求点C到侧面A1B的距离.
(乙)在棱长为a的正方体OABC-O'A'B'C'中,E,F分别是棱AB,BC上的动点,且AE=BF.
(1)求证:A'F⊥C'E;
(2)当三棱锥B'-BEF的体积取得最大值时,求二面角B'-EF-B的大小(结果用反三角函数表示). 查看习题详情和答案>>
3 |
(1)求侧棱A1A与底面ABC所成的角的大小;
(2)求侧面A1B与底面所成二面角的大小;
(3)求点C到侧面A1B的距离.
(乙)在棱长为a的正方体OABC-O'A'B'C'中,E,F分别是棱AB,BC上的动点,且AE=BF.
(1)求证:A'F⊥C'E;
(2)当三棱锥B'-BEF的体积取得最大值时,求二面角B'-EF-B的大小(结果用反三角函数表示). 查看习题详情和答案>>
(理)已知函数f(x)=x2+aln(x+1).
(1)若函数f(x)在定义域内既有极大值又有极小值,求实数a的取值范围;
(2)证明:a=1时,对于任意的x1,x2∈[1,+∞),且x1≠x2,都有
>
;
(3)是否存在最小的正整数N,使得当n≥N时,不等式ln
>
恒成立.
查看习题详情和答案>>
(1)若函数f(x)在定义域内既有极大值又有极小值,求实数a的取值范围;
(2)证明:a=1时,对于任意的x1,x2∈[1,+∞),且x1≠x2,都有
f(x1)-f(x2) |
x1-x2 |
5 |
2 |
(3)是否存在最小的正整数N,使得当n≥N时,不等式ln
n+1 |
n |
n-1 |
n3 |
(2012•临沂二模)等差数列{an}的各项为正,其前n项和为Sn,且S3=9,又a1+2、a2+3、a3+7成等比数列.
(Ⅰ)求数列{an}的通项公式;
(Ⅱ)求证:当n≥2时,
+
+…+
<
.
查看习题详情和答案>>
(Ⅰ)求数列{an}的通项公式;
(Ⅱ)求证:当n≥2时,
1 |
a12 |
1 |
a22 |
1 |
an2 |
5 |
4 |