摘要:BC平面A′BC ∴平面A′BC⊥平面A′EC
网址:http://m.1010jiajiao.com/timu_id_335888[举报]
选修4-1:平面几何选讲
如图,A,B,C,D四点在同一圆上,AD的延长线与BC的延长线交于E点,且EC=ED.
(Ⅰ)证明:CD∥AB;
(Ⅱ)延长CD到F,延长DC到G,使得EF=EG,证明:A,B,G,F四点共圆.
在四棱锥P-ABCD中,PA⊥平面ABCD,PC⊥AD.底面ABCD为梯形,AB∥DC,AB⊥BC.PA=AB=BC,点E在棱PB上,且PE=2EB.
(1)求证:PD∥平面EAC;
(2)求二面角A-EC-P的余弦值的大小.
如图,在五面体ABCDEF中,FA⊥平面ABCD,AD∥BC∥FE,AB⊥AD,M为EC的中点,AF=AB=BC=FE=
AD,
(1)求异面直线BF与DE所成的角的大小;
(2)证明平面AMD⊥平面CDE;
(3)求二面角A-CD-E的余弦值. 查看习题详情和答案>>
1 | 2 |
(1)求异面直线BF与DE所成的角的大小;
(2)证明平面AMD⊥平面CDE;
(3)求二面角A-CD-E的余弦值. 查看习题详情和答案>>