摘要:(2)求数列的前n项和,
网址:http://m.1010jiajiao.com/timu_id_303338[举报]
一、选择题:
题号
1
2
3
4
5
6
7
8
9
10
11
12
答案
A
D
A
D
C
A
D
C
B
D
B
C
二、填空题:
13、 14、 15、等; 16、7
三、解答题
17、(1)由余弦定理: 又
∴ ∴
(2)∵A+B+C= ∴
∴
18、(1) (2)
19、(1)AC=1,BC=2 ,AB= ,∴∴AC
又 平面PAC平面ABC,平面PAC平面ABC=AC,∴BC平面PAC
又∵PA平面APC ∴
(2)该几何体的主试图如下:
几何体主试图的面积为
∴ ∴
(3)取PC 的中点N,连接AN,由△PAC是边长为1的正三角形,可知
由(1)BC平面PAC,可知 ∴平面PCBM
∴
20、(1)的最小值为
(2)a的取值范围是
21、(1)曲线C的方程为
(2),存在点M(―1,2)满足题意
22、(1)由于点B1(1,y1),B2(2,y2),…,Bn(n,yn)()在直线上
则 因此,所以是等差数列
(2)由已知有得 同理
∴
∴
∴
(3)由(2)得,则
∴
∴
∴
由于 而
则,从而
同理:……
以上个不等式相加得:
即,从而
(2012•卢湾区一模)已知数列{bn},若存在正整数T,对一切n∈N*都有bn+r=bn,则称数列{bn}为周期数列,T是它的一个周期.例如:
数列a,a,a,a,…①可看作周期为1的数列;
数列a,b,a,b,…②可看作周期为2的数列;
数列a,b,c,a,b,c,…③可看作周期为3的数列…
(1)对于数列②,它的一个通项公式可以是an =
,试再写出该数列的一个通项公式;
(2)求数列③的前n项和Sn;
(3)在数列③中,若a=2,b=
,c=-1,且它有一个形如bn=Asin(ωn+φ)+B的通项公式,其中A、B、ω、φ均为实数,A>0,ω>0,|φ|<
,求该数列的一个通项公式bn.
查看习题详情和答案>>
数列a,a,a,a,…①可看作周期为1的数列;
数列a,b,a,b,…②可看作周期为2的数列;
数列a,b,c,a,b,c,…③可看作周期为3的数列…
(1)对于数列②,它的一个通项公式可以是an =
|
(2)求数列③的前n项和Sn;
(3)在数列③中,若a=2,b=
1 |
2 |
π |
2 |