摘要:解得 令=1, 得 n= .-----------12分
网址:http://m.1010jiajiao.com/timu_id_282044[举报]
在平行四边形OABC中,已知过点C的直线与线段OA,OB分别相交于点M,N.若
=x
,
=y
.
(1)求证:x与y的关系为y=
;
(2)设f(x)=
,定义函数F(x)=
-1(0<x≤1),点列Pi(xi,F(xi))(i=1,2,…,n,n≥2)在函数F(x)的图象上,且数列{xn}是以首项为1,公比为
的等比数列,O为原点,令
=
+
+…+
,是否存在点Q(1,m),使得
⊥
?若存在,请求出Q点坐标;若不存在,请说明理由.
(3)设函数G(x)为R上偶函数,当x∈[0,1]时G(x)=f(x),又函数G(x)图象关于直线x=1对称,当方程G(x)=ax+
在x∈[2k,2k+2](k∈N)上有两个不同的实数解时,求实数a的取值范围.
查看习题详情和答案>>
OM |
OA |
ON |
OB |
(1)求证:x与y的关系为y=
x |
x+1 |
(2)设f(x)=
x |
x+1 |
1 |
f(x) |
1 |
2 |
OP |
OP1 |
OP2 |
OPn |
OP |
OQ |
(3)设函数G(x)为R上偶函数,当x∈[0,1]时G(x)=f(x),又函数G(x)图象关于直线x=1对称,当方程G(x)=ax+
1 |
2 |
在平行四边形OABC中,已知过点C的直线与线段OA,OB分别相交于点M,N.若
=x
,
=y
.
(1)求证:x与y的关系为y=
;
(2)设f(x)=
,定义函数F(x)=
-1(0<x≤1),点列Pi(xi,F(xi))(i=1,2,…,n,n≥2)在函数F(x)的图象上,且数列{xn}是以首项为1,公比为
的等比数列,O为原点,令
=
+
+…+
,是否存在点Q(1,m),使得
⊥
?若存在,请求出Q点坐标;若不存在,请说明理由.
(3)设函数G(x)为R上偶函数,当x∈[0,1]时G(x)=f(x),又函数G(x)图象关于直线x=1对称,当方程G(x)=ax+
在x∈[2k,2k+2](k∈N)上有两个不同的实数解时,求实数a的取值范围.
查看习题详情和答案>>
OM |
OA |
ON |
OB |
(1)求证:x与y的关系为y=
x |
x+1 |
(2)设f(x)=
x |
x+1 |
1 |
f(x) |
1 |
2 |
OP |
OP1 |
OP2 |
OPn |
OP |
OQ |
(3)设函数G(x)为R上偶函数,当x∈[0,1]时G(x)=f(x),又函数G(x)图象关于直线x=1对称,当方程G(x)=ax+
1 |
2 |