摘要:的条件下,设. 是否存在最小正整数, 使得对任意, 有恒成立?若存在.求出m的值,若不存在.请说明理由
网址:http://m.1010jiajiao.com/timu_id_259133[举报]
设集合W由满足下列两个条件的数列{an}构成:①
<an+1;②存在实数M,使an≤M.(n为正整数)
(Ⅰ)在只有5项的有限数列{an}、{bn}中,其中a1=1,a2=2,a3=3,a4=4,a5=5;b1=1,b2=4,b3=5,b4=4,b5=1;试判断数列{an}、{bn}是否为集合W中的元素;
(Ⅱ)设{cn}是各项为正数的等比数列,Sn是其前n项和,c3=
,S3=
,试证明{Sn}∈W,并写出M的取值范围;
(Ⅲ)设数列{dn}∈W,对于满足条件的M的最小值M0,都有dn≠M0(n∈N*).求证:数列{dn}单调递增. 查看习题详情和答案>>
an+an+2 |
2 |
(Ⅰ)在只有5项的有限数列{an}、{bn}中,其中a1=1,a2=2,a3=3,a4=4,a5=5;b1=1,b2=4,b3=5,b4=4,b5=1;试判断数列{an}、{bn}是否为集合W中的元素;
(Ⅱ)设{cn}是各项为正数的等比数列,Sn是其前n项和,c3=
1 |
4 |
7 |
4 |
(Ⅲ)设数列{dn}∈W,对于满足条件的M的最小值M0,都有dn≠M0(n∈N*).求证:数列{dn}单调递增. 查看习题详情和答案>>
设集合W由满足下列两个条件的数列构成:
①
②存在实数M,使(n为正整数)
(I)在只有5项的有限数列
;试判断数列是否为集合W的元素;
(II)设是各项为正的等比数列,是其前n项和,证明数列;并写出M的取值范围;
(III)设数列且对满足条件的M的最小值M0,都有.
求证:数列单调递增.
查看习题详情和答案>>(14分)设集合W由满足下列两个条件的数列构成:
①
②存在实数M,使(n为正整数)
(I)在只有5项的有限数列
;试判断数列是否为集合W的元素;
(II)设是各项为正的等比数列,是其前n项和,证明数列;并写出M的取值范围;
(III)设数列且对满足条件的M的最小值M0,都有.
求证:数列单调递增.