摘要: 已知函数的最小正周期为,则该函数图象 A.关于直线对称 B.关于点(.0)对称 C.关于点(.0)对称 D.关于直线对称

网址:http://m.1010jiajiao.com/timu_id_248821[举报]

一.选择题:DCBBA  DACCA

二.填空题:11.4x-3y-17 = 0  12.33  13.  14.  15.

三.解答题:

16.(1)解:由频率分布条形图知,抽取的学生总数为人                            4分
∵各班被抽取的学生人数成等差数列,设其公差为d
由4×22+6d = 100解得:d = 2                                                                              6分
∴各班被抽取的学生人数分别是22人,24人,26人,28人.                                 8分
(2)解:在抽取的学生中,任取一名学生,分数不小于90分的概率为
0.35+0.25+0.1+0.05=0.75                                                                                        12分

17.(1)解:∵                                  2分
∴由得:,即              4分
又∵,∴                                                                                    6分

(2)解:                                    8分
得:,即          10分
两边平方得:,∴                                                                        12分

18.方法一

(1)证:∵CD⊥AB,CD⊥BC,∴CD⊥平面ABC                                                      2分
又∵CDÌ平面ACD,∴平面ACD⊥平面ABC   4分

(2)解:∵AB⊥BC,AB⊥CD,∴AB⊥平面BCD,故AB⊥BD
∴∠CBD是二面角C-AB-D的平面角          6分
∵在Rt△BCD中,BC = CD,∴∠CBD = 45°
即二面角C-AB-D的大小为45°              8分

(3)解:过点B作BH⊥AC,垂足为H,连结DH
∵平面ACD⊥平面ABC,∴BH⊥平面ACD,
∴∠BDH为BD与平面ACD所成的角           10分
设AB = a,在Rt△BHD中,
,                                                                                    10分
解得:,即线段AB的长度为1                                                                           12分

方法二
(1)同方法一                                                                                                               4分
(2)解:设以过B点且∥CD的向量为x轴,为y轴和z轴建立如图所示的空间直角坐标系,设AB = a,则A(0,0,a),C(0,1,0),D(1,1,0), = (1,1,0), = (0,0,a)
平面ABC的法向量 = (1,0,0)
设平面ABD的一个法向量为n = (x,y,z),则

n = (1,-1,0)                           6分

∴二面角C-AB-D的大小为45°                                                                           8分

(3)解: = (0,1,-a), = (1,0,0), = (1,1,0)
设平面ACD的一个法向量是m = (x,y,z),则
∴取m = (0,a,1),由直线BD与平面ACD所成角为30°,故向量、m的夹角为60°
                                                                               10分
解得:,即线段AB的长度为1                                                                           12分

19.(1)解:设M (x,y),在△MAB中,| AB | = 2,

                        2分
因此点M的轨迹是以A、B为焦点的椭圆,a = 2,c = 1
∴曲线C的方程为.                                                                                4分

(2)解法一:设直线PQ方程为 (∈R)
得:                                                            6分
显然,方程①的,设P(x1,y1),Q(x2,y2),则有

                                                           8分
,则t≥4,                10分
时有最大值9,故,即S≤3,∴△APQ的最大值为3               12分

解法二:设P(x1,y1),Q(x2,y2),则
当直线PQ的斜率不存在时,易知S = 3
设直线PQ方程为
  得:  ①                                         6分
显然,方程①的△>0,则
                                    8分
                                10分
,则
,即S<3

∴△APQ的最大值为3                                                                                              12分

20.(1)解:
∵a<0,∴
故函数f (x)在区间(-∞,)、(-a,+∞)上单调递增,在(,-a)上单调递减    4分

(2)解:∵二次函数有最大值,∴a<0                                              5分
得:                                                                           6分
∵函数的图象只有一个公共点,
,又a<0,∴-1≤a<0                                                 8分
,∴ (-1≤a<0)                                  10分

(3)解:当a < 0时,函数f (x)在区间(-∞,)、(-a,+∞)上单调递增,
函数g (x)在区间(-∞,)上单调递增

                                                                                            12分
当a > 0时,函数f (x)在区间(-∞,-a)、(,+∞)上单调递增,
函数g (x)在区间(,+∞)上单调递增

综上所述,实数a的取值范围是(-∞,]∪[3,+∞)                                        13分

21.(1)解:记
令x = 1得:
令x =-1得:
两式相减得:,∴                                    4分
当n≥2时,
当n = 1时,,适合上式
                                                                                                6分

(2)解:
注意到                               8分
可改写为:


                                                                                                               10分

           12分
                                                                                              14分

 

 

 

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网