摘要:∴k?kAN=k?=-1.∴m=.
网址:http://m.1010jiajiao.com/timu_id_248770[举报]
(2013•淄博二模)等比数列{cn}满足cn+1+cn=10•4n-1(n∈N*),数列{an}的前n项和为Sn,且an=log2cn.
(I)求an,Sn;
(II)数列{bn}满足bn=
,Tn为数列{bn}的前n项和,是否存在正整数m,k(1<m<k),使得T1,Tm,Tk成等比数列?若存在,求出所有m,k的值;若不存在,请说明理由.
查看习题详情和答案>>
(I)求an,Sn;
(II)数列{bn}满足bn=
1 | 4Sn-1 |
已知椭圆内一定点M(m,0)(m≠0)和直线:,直线与轴交点为K.
(1)过M的任意直线与椭圆交于A、B两点,证明:∠AKM=∠BKM;
(2)过点K的直线与椭圆相交于A、E两点,设,过点E且平行于直线的直线与椭圆相交于另一点B,证明:.
查看习题详情和答案>>
等比数列{cn}满足的前n项和为Sn,且an=log2cn.
(I)求an,Sn;
(II)数列的前n项和,是否存在正整数m,k(1<m<k),使得T1,Tm,Tk成等比数列?若存在,求出所有m,k的值;若不存在,请说明理由.
查看习题详情和答案>>
(I)求an,Sn;
(II)数列的前n项和,是否存在正整数m,k(1<m<k),使得T1,Tm,Tk成等比数列?若存在,求出所有m,k的值;若不存在,请说明理由.
查看习题详情和答案>>
在△ABC中,角A、B、C的对边分别为a、b、c,向量=(sinA,b+c),=(a-c,sinC-sinB),满足=
(Ⅰ)求角B的大小;
(Ⅱ)设=(sin(C+),), =(2k,cos2A) (k>1), 有最大值为3,求k的值.
【解析】本试题主要考查了向量的数量积和三角函数,以及解三角形的综合运用
第一问中由条件|p +q |=| p -q |,两边平方得p·q=0,又
p=(sinA,b+c),q=(a-c,sinC-sinB),代入得(a-c)sinA+(b+c)(sinC-sinB)=0,
根据正弦定理,可化为a(a-c)+(b+c)(c-b)=0,
即,又由余弦定理=2acosB,所以cosB=,B=
第二问中,m=(sin(C+),),n=(2k,cos2A) (k>1),m·n=2ksin(C+)+cos2A=2ksin(C+B) +cos2A
=2ksinA+-=-+2ksinA+=-+ (k>1).
而0<A<,sinA∈(0,1],故当sin=1时,m·n取最大值为2k-=3,得k=.
查看习题详情和答案>>
(2011•东城区模拟)对数列{an},规定{△an}为数列{an}的一阶差分数列,其中△an=an+1-an(n∈N*).对正整数k,规定 {△kan}为{an}的k阶差分数列,其中△kan=△k-1an+1-△k-1an=△(△k-1an).
(Ⅰ)若数列{an}的首项a1=1,且满足△2an-△an+1+an=-2n,求数列{an}的通项公式;
(Ⅱ)对(Ⅰ)中的数列{an},若数列{bn}是等差数列,使得b1Cn1+b2Cn2+b3Cn3+…+bn-1Cnn-1+bnCnn=an对一切正整数n∈N*都成立,求bn;
(Ⅲ) 在(Ⅱ)的条件下,令cn=(2n-1)bn,设Tn=
+
+
+…+
,若Tn<m成立,求最小正整数m的值.
查看习题详情和答案>>
(Ⅰ)若数列{an}的首项a1=1,且满足△2an-△an+1+an=-2n,求数列{an}的通项公式;
(Ⅱ)对(Ⅰ)中的数列{an},若数列{bn}是等差数列,使得b1Cn1+b2Cn2+b3Cn3+…+bn-1Cnn-1+bnCnn=an对一切正整数n∈N*都成立,求bn;
(Ⅲ) 在(Ⅱ)的条件下,令cn=(2n-1)bn,设Tn=
c1 |
a1 |
c2 |
a2 |
c3 |
a3 |
cn |
an |