网址:http://m.1010jiajiao.com/timu_id_192958[举报]
若函数在定义域内存在区间
,满足
在
上的值域为
,则称这样的函数
为“优美函数”.
(Ⅰ)判断函数是否为“优美函数”?若是,求出
;若不是,说明理由;
(Ⅱ)若函数为“优美函数”,求实数
的取值范围.
【解析】第一问中,利用定义,判定由题意得,由
,所以
第二问中, 由题意得方程有两实根
设所以关于m的方程
在
有两实根,
即函数与函数
的图像在
上有两个不同交点,从而得到t的范围。
解(I)由题意得,由
,所以
(6分)
(II)由题意得方程有两实根
设所以关于m的方程
在
有两实根,
即函数与函数
的图像在
上有两个不同交点。
查看习题详情和答案>>
已知函数f(x)=sin(ωx+φ)
(0<φ<π,ω>0)过点
,函数y=f(x)图象的两相邻对称轴间的距离为
.
(1) 求f(x)的解析式;
(2) f(x)的图象向右平移个单位后,得到函数y=g(x)的图象,求函数g(x)的单调递减区间.
【解析】本试题主要考查了三角函数的图像和性质的运用,第一问中利用函数y=f(x)图象的两相邻对称轴间的距离为.得
,
所以
第二问中,,
可以得到单调区间。
解:(Ⅰ)由题意得,
,…………………1分
代入点
,得
…………1分
,
∴
(Ⅱ),
的单调递减区间为
,
.
查看习题详情和答案>>
△ABC中,D在边BC上,且BD=2,DC=1,∠B=60o,∠ADC=150o,求AC的长及△ABC的面积。
【解析】本试题主要考查了余弦定理的运用。利用由题意得,
,
并且
有
得到结论。
解:(Ⅰ)由题意得,
………1分
…………1分
(Ⅱ)………………1分
查看习题详情和答案>>
设函数f(x)=lnx,g(x)=ax+,函数f(x)的图像与x轴的交点也在函数g(x)的图像上,且在此点处f(x)与g(x)有公切线.[来源:学。科。网]
(Ⅰ)求a、b的值;
(Ⅱ)设x>0,试比较f(x)与g(x)的大小.[来源:学,科,网Z,X,X,K]
【解析】第一问解:因为f(x)=lnx,g(x)=ax+
则其导数为
由题意得,
第二问,由(I)可知,令
。
∵, …………8分
∴是(0,+∞)上的减函数,而F(1)=0, …………9分
∴当时,
,有
;当
时,
,有
;当x=1时,
,有
解:因为f(x)=lnx,g(x)=ax+
则其导数为
由题意得,
(11)由(I)可知,令
。
∵, …………8分
∴是(0,+∞)上的减函数,而F(1)=0, …………9分
∴当时,
,有
;当
时,
,有
;当x=1时,
,有
查看习题详情和答案>>
在复平面内, 是原点,向量
对应的复数是
,
=2+i。
(Ⅰ)如果点A关于实轴的对称点为点B,求向量对应的复数
和
;
(Ⅱ)复数,
对应的点C,D。试判断A、B、C、D四点是否在同一个圆上?并证明你的结论。
【解析】第一问中利用复数的概念可知得到由题意得,A(2,1) ∴B(2,-1)
∴ =(0,-2)
∴
=-2i ∵
(2+i)(-2i)=2-4i,
∴
=
第二问中,由题意得,=(2,1)
∴
同理,所以A、B、C、D四点到原点O的距离相等,
∴A、B、C、D四点在以O为圆心,为半径的圆上
(Ⅰ)由题意得,A(2,1) ∴B(2,-1)
∴ =(0,-2)
∴
=-2i 3分
∵ (2+i)(-2i)=2-4i,
∴
=
2分
(Ⅱ)A、B、C、D四点在同一个圆上。 2分
证明:由题意得,=(2,1)
∴
同理,所以A、B、C、D四点到原点O的距离相等,
∴A、B、C、D四点在以O为圆心,为半径的圆上
查看习题详情和答案>>