网址:http://m.1010jiajiao.com/timu_id_192433[举报]
设椭圆的左、右顶点分别为
,点
在椭圆上且异于
两点,
为坐标原点.
(Ⅰ)若直线与
的斜率之积为
,求椭圆的离心率;
(Ⅱ)若,证明直线
的斜率
满足
【解析】(1)解:设点P的坐标为.由题意,有
①
由,得
,
由,可得
,代入①并整理得
由于,故
.于是
,所以椭圆的离心率
(2)证明:(方法一)
依题意,直线OP的方程为,设点P的坐标为
.
由条件得消去
并整理得
②
由,
及
,
得.
整理得.而
,于是
,代入②,
整理得
由,故
,因此
.
所以.
(方法二)
依题意,直线OP的方程为,设点P的坐标为
.
由P在椭圆上,有
因为,
,所以
,即
③
由,
,得
整理得
.
于是,代入③,
整理得
解得,
所以.
查看习题详情和答案>>
若二次函数y=f(x)的图象经过原点,且1≤f(-1)≤2,3≤f(1)≤4,求f(-2)的范围.
分析:要求f(-2)的取值范围,只需找到含人f(-2)的不等式(组).由于y=f(x)是二次函数,所以应先将f(x)的表达形式写出来.即可求得f(-2)的表达式,然后依题设条件列出含有f(-2)的不等式(组),即可求解.
查看习题详情和答案>>已知,函数
(1)当时,求函数
在点(1,
)的切线方程;
(2)求函数在[-1,1]的极值;
(3)若在上至少存在一个实数x0,使
>g(xo)成立,求正实数
的取值范围。
【解析】本试题中导数在研究函数中的运用。(1)中,那么当
时,
又
所以函数
在点(1,
)的切线方程为
;(2)中令
有
对a分类讨论,和
得到极值。(3)中,设
,
,依题意,只需
那么可以解得。
解:(Ⅰ)∵ ∴
∴ 当时,
又
∴ 函数在点(1,
)的切线方程为
--------4分
(Ⅱ)令 有
①
当即
时
|
(-1,0) |
0 |
(0, |
|
( |
|
+ |
0 |
- |
0 |
+ |
|
|
极大值 |
|
极小值 |
|
故的极大值是
,极小值是
②
当即
时,
在(-1,0)上递增,在(0,1)上递减,则
的极大值为
,无极小值。
综上所述 时,极大值为
,无极小值
时 极大值是
,极小值是
----------8分
(Ⅲ)设,
对求导,得
∵,
∴ 在区间
上为增函数,则
依题意,只需,即
解得 或
(舍去)
则正实数的取值范围是(
,
)
查看习题详情和答案>>
一支车队有15辆车,某天依次出发执行运输任务,第一辆车于下午2时出发,第二辆车于下午2时10分出发,第三辆车于下午2时20分出发,依此类推。假设所有的司机都连续开车,并都在下午6时停下来休息。
(1)到下午6时最后一辆车行驶了多长时间?
(2)如果每辆车的行驶速度都是60,这个车队当天一共行驶了多少千米?
【解析】第一问中,利用第一辆车出发时间为下午2时,每隔10分钟即小时出发一辆
则第15辆车在小时,最后一辆车出发时间为:
小时
第15辆车行驶时间为:小时(1时40分)
第二问中,设每辆车行驶的时间为:,由题意得到
是以
为首项,
为公差的等差数列
则行驶的总时间为:
则行驶的总里程为:运用等差数列求和得到。
解:(1)第一辆车出发时间为下午2时,每隔10分钟即小时出发一辆
则第15辆车在小时,最后一辆车出发时间为:
小时
第15辆车行驶时间为:小时(1时40分)
……5分
(2)设每辆车行驶的时间为:,由题意得到
是以
为首项,
为公差的等差数列
则行驶的总时间为: ……10分
则行驶的总里程为:
查看习题详情和答案>>
如图,,
,…,
,…是曲线
上的点,
,
,…,
,…是
轴正半轴上的点,且
,
,…,
,…
均为斜边在
轴上的等腰直角三角形(
为坐标原点).
(1)写出、
和
之间的等量关系,以及
、
和
之间的等量关系;
(2)求证:(
);
(3)设,对所有
,
恒成立,求实数
的取值范围.
【解析】第一问利用有,
得到
第二问证明:①当时,可求得
,命题成立;②假设当
时,命题成立,即有
则当
时,由归纳假设及
,
得
第三问
.………………………2分
因为函数在区间
上单调递增,所以当
时,
最大为
,即
解:(1)依题意,有,
,………………4分
(2)证明:①当时,可求得
,命题成立;
……………2分
②假设当时,命题成立,即有
,……………………1分
则当时,由归纳假设及
,
得.
即
解得(
不合题意,舍去)
即当时,命题成立. …………………………………………4分
综上所述,对所有,
. ……………………………1分
(3)
.………………………2分
因为函数在区间
上单调递增,所以当
时,
最大为
,即
.……………2分
由题意,有.
所以,
查看习题详情和答案>>