摘要:由题意.得对任意R成立. --------------------8分
网址:http://m.1010jiajiao.com/timu_id_152359[举报]
设数列的各项均为正数.若对任意的,存在,使得成立,则称数列为“Jk型”数列.
(1)若数列是“J2型”数列,且,,求;
(2)若数列既是“J3型”数列,又是“J4型”数列,证明:数列是等比数列.
【解析】1)中由题意,得,,,,…成等比数列,且公比,
所以.
(2)中证明:由{}是“j4型”数列,得,…成等比数列,设公比为t. 由{}是“j3型”数列,得
,…成等比数列,设公比为;
,…成等比数列,设公比为;
…成等比数列,设公比为;
查看习题详情和答案>>
如图,已知圆锥体的侧面积为,底面半径和互相垂直,且,是母线的中点.
(1)求圆锥体的体积;
(2)异面直线与所成角的大小(结果用反三角函数表示).
【解析】本试题主要考查了圆锥的体积和异面直线的所成的角的大小的求解。
第一问中,由题意,得,故
从而体积.2中取OB中点H,联结PH,AH.
由P是SB的中点知PH//SO,则(或其补角)就是异面直线SO与PA所成角.
由SO平面OAB,PH平面OAB,PHAH.在OAH中,由OAOB得;
在中,,PH=1/2SB=2,,
则,所以异面直线SO与P成角的大arctan
解:(1)由题意,得,
故从而体积.
(2)如图2,取OB中点H,联结PH,AH.
由P是SB的中点知PH//SO,则(或其补角)就是异面直线SO与PA所成角.
由SO平面OAB,PH平面OAB,PHAH.
在OAH中,由OAOB得;
在中,,PH=1/2SB=2,,
则,所以异面直线SO与P成角的大arctan
查看习题详情和答案>>