摘要:设椭圆+y2=1的两个焦点是F1与F2.且椭圆上存在点M.使?=0.(1)若直线t:y=x+2与椭圆存在一个公共点E.使得|EF1|+|EF2|取得最小值.求此最小值及此时椭圆的方程,
网址:http://m.1010jiajiao.com/timu_id_147054[举报]
设椭圆+y2=1的两个焦点是F1(-c,0)与F2(c,0),(c>0),且椭圆上存在一点P,使得直线PF1与PF2垂直.
(1)求实数m的取值范围;
(2)设l是相应于焦点F2的准线,直线PF2与l相交于点Q,若||=2-,求直线PF2的方程.
查看习题详情和答案>>设椭圆C∶(a>0)的两个焦点是F1(-c,0)和F2(c,0)(c>0),且椭圆C与圆x2+y2=c2有公共点.
(1)求a的取值范围;
(2)(理)若椭圆上的点到焦点的最短距离为,求椭圆的方程;
(文)如果椭圆的两个焦点与短轴的两个端点恰好是正方形的四个顶点,求椭圆的方程;
(3)(理)对(2)中的椭圆C,直线l∶y=kx+m(k≠0)与C交于不同的两点M、N,若线段MN的垂直平分线恒过点A(0,-1),求实数m的取值范围.
(文)过(2)中椭圆右焦点F2且不与坐标轴垂直的直线l交椭圆于M、N两点,线段MN的垂直平分线与x轴交于点Q,求点Q的横坐标的取值范围.
设椭圆C:的两个焦点是F1(-c,0)和F2(c,0)(c>0),且椭圆C与圆x2+y2=c2有公共点.
(Ⅰ)求a的取值范围;
(Ⅱ)若椭圆上的点到焦点的最短距离为,求椭圆的方程;
(Ⅲ)对(Ⅱ)中的椭圆C,直线l:y=kx+m(k≠0)与C交于不同的两点M、N,若线段MN的垂直平分线恒过点A(0,-1),求实数m的取值范围.