网址:http://m.1010jiajiao.com/timu_id_135923[举报]
ABABD DCAAD AC
13. 2; 14.52; 15. ; 16 ,0 17. 或
18. 解:(Ⅰ) f’(x)=3x2+2mx-m2=(x+m)(3x-m)=0,则x=-m或x=m,
当x变化时,f’(x)与f(x)的变化情况如下表:
x
(-∞,-m)
-m
(-m,)
(,+∞)
f’(x)
+
0
-
0
+
f (x)
极大值
极小值
从而可知,当x=-m时,函数f(x)取得极大值9,
即f(-m)=-m3+m3+m3+1=9,∴m=2.
(Ⅱ)由(Ⅰ)知,f(x)=x3+2x2-4x+1,
依题意知f’(x)=3x2+4x-4=-5,∴x=-1或x=-.
又f(-1)=6,f(-)=,
所以切线方程为y-6=-5(x+1),或y-=-5(x+),
即5x+y-1=0,或135x+27y-23=0.
19. 解:(1)由已知,,分别取,得,,,
;
所以数列的前5项是:,,,,;
(2)由(1)中的分析可以猜想.
下面用数学归纳法证明:
①当时,猜想显然成立.
②假设当时猜想成立,即.
那么由已知,得,
即.所以,
即,又由归纳假设,得,
所以,即当时,公式也成立.
当①和②知,对一切,都有成立.
20. 解: (Ⅰ)改进工艺后,每件产品的销售价为,月平均销售量为件,则月平均利润(元),
∴与的函数关系式为 .
(Ⅱ)由得,(舍),
当时;时,
∴函数 在取得最大值.
故改进工艺后,产品的销售价为元时,旅游部门销售该纪念品的月平均利润最大.
21. 解:(1)因为,
所以满足条件
又因为当时,,所以方程有实数根0.
所以函数是集合M中的元素.
(2)假设方程存在两个实数根),
则,
不妨设,根据题意存在数
使得等式成立
因为,所以
与已知矛盾,所以方程只有一个实数根.
22. 解:(Ⅰ),.∴直线的斜率为,且与函数的图象的切点坐标为. ∴直线的方程为. 又∵直线与函数的图象相切,
∴方程组有一解. 由上述方程消去,并整理得
①
依题意,方程①有两个相等的实数根,
解之,得或 .
(Ⅱ)由(Ⅰ)可知,
. .
∴当时,,当时,.
∴当时,取最大值,其最大值为2.
(Ⅲ) .
, , .
由(Ⅱ)知当时, ∴当时,,
. ∴
解:因为有负根,所以在y轴左侧有交点,因此
解:因为函数没有零点,所以方程无根,则函数y=x+|x-c|与y=2没有交点,由图可知c>2
13.证明:(1)令x=y=1,由已知可得f(1)=f(1×1)=f(1)f(1),所以f(1)=1或f(1)=0
若f(1)=0,f(0)=f(1×0)=f(1)f(0)=0,所以f(1)=f(0)与已知条件“”矛盾所以f(1)≠0,因此f(1)=1,所以f(1)-1=0,1是函数y=f(x)-1的零点
(2)因为f(1)=f[(-1)×(-1)]=f2(-1)=,所以f(-1)=±1,但若f(-1)=1,则f(-1)=f(1)与已知矛盾所以f(-1)不能等于1,只能等于-1。所以任x∈R,f(-x)=f(-1)f(x)=-f(x),因此函数是奇函数
数字1,2,3,4恰好排成一排,如果数字i(i=1,2,3,4)恰好出现在第i个位置上则称有一个巧合,求巧合数的分布列。
查看习题详情和答案>>解:因为有负根,所以在y轴左侧有交点,因此
某种产品的广告支出x与销售额y(单位:百万元)之间有如下的对应关系
x | 2 | 4 | 5 | 6 | 8 |
y | 30 | 40 | 60 | 50 | 70 |
(1)假定x与y之间具有线性相关关系,求回归直线方程.
(2)若实际销售额不少于60百万元,则广告支出应该不少于多少?
查看习题详情和答案>>解::因为,所以f(1)f(2)<0,因此f(x)在区间(1,2)上存在零点,又因为y=与y=-在(0,+)上都是增函数,因此在(0,+)上是增函数,所以零点个数只有一个方法2:把函数的零点个数个数问题转化为判断方程解的个数问题,近而转化成判断与交点个数问题,在坐标系中画出图形
由图看出显然一个交点,因此函数的零点个数只有一个
袋中有50个大小相同的号牌,其中标着0号的有5个,标着n号的有n个(n=1,2,…9),现从袋中任取一球,求所取号码的分布列,以及取得号码为偶数的概率.
查看习题详情和答案>>解:因为函数没有零点,所以方程无根,则函数y=x+|x-c|与y=2没有交点,由图可知c>2
现有5名同学的物理和数学成绩如下表:
物理 | 64 | 61 | 78 | 65 | 71 |
数学 | 66 | 63 | 88 | 76 | 73 |
(1)画出散点图;
(2)若与具有线性相关关系,试求变量对的回归方程并求变量对的回归方程.
查看习题详情和答案>>