网址:http://m.1010jiajiao.com/timu_id_107365[举报]
一、选择题:
1.C 2.D 3.C 4.D 5.C 6.A 7.A 8.D 9.D 10.B
二、填空题:
11. 12. 13. 14.7 15. 16. 17.
18. 答案不惟一,如,或等 19. 60 20. 21.
22. 23. 24.
三、解答题:
25 解: (Ⅰ)因为,∴,则
∴
(Ⅱ)由,得,∴
则
由正弦定理,得,∴的面积为
26解:(Ⅰ)因为,,且,
所以
又,所以四边形为平行四边形,则
而,故点的位置满足
(Ⅱ)证: 因为侧面底面,,且,
所以,则
又,且,所以
而,所以
27解:(Ⅰ)因为,所以的面积为()
设正方形的边长为,则由,得,
解得,则
所以,则
(Ⅱ)因为,所以
当且仅当时取等号,此时.所以当长为时,有最小值1
28解:(Ⅰ)设圆心,则,解得
则圆的方程为,将点的坐标代入得,故圆的方程为
(Ⅱ)设,则,且
==,
所以的最小值为(可由线性规划或三角代换求得)
(Ⅲ)由题意知, 直线和直线的斜率存在,且互为相反数,故可设,
,由,
得
因为点的横坐标一定是该方程的解,故可得
同理,,
所以=
所以,直线和一定平行
29解:(Ⅰ)因为
由;由,
所以在上递增,在上递减
欲在上为单调函数,则
(Ⅱ)证:因为在上递增,在上递减,
所以在处取得极小值
又,所以在上的最小值为
从而当时,,即
(Ⅲ)证:因为,所以即为,
令,从而问题转化为证明方程=0
在上有解,并讨论解的个数
因为www.tesoon.com,,
所以 ①当时,,
所以在上有解,且只有一解
②当时,,但由于,
所以在上有解,且有两解
③当时,,所以在上有且只有一解;
当时,,
所以在上也有且只有一解
综上所述, 对于任意的,总存在,满足,
且当时,有唯一的适合题意;
当时,有两个适合题意
30解:(Ⅰ)由题意得,,所以=
(Ⅱ)证:令,,则=1
所以=(1),=(2),
(2)―(1),得―=,
化简得(3)
(4),(4)―(3)得
在(3)中令,得,从而为等差数列
(Ⅲ)记,公差为,则=
则,
则,当且仅当,即时等号成立
3 | 4 |
(I)乙队以4:3点球取胜的概率有多大?
(II)设点球中乙队得分为随机变量ξ,求乙队在五个点球中得分ξ的概率分布和数学期望.
(09年长沙一中第八次月考理) (13分)货币是有时间价值的,现在的100元比一年后的100元价值要大些。例如银行存款的年利率为5%,那么现在的100元一年后就变为100(1+5%)=105元,而一年后的100元只相当于现在的元,即一年后100元的现值为元。一般地,若银行的年利率为i,且在近n年内保持不变,则第n年后的a元的现值为元。在经济决策时,常考虑货币的时间价值,把不同时期的货币化为其现值进行决策。某工厂年初欲购买某类型机器,有甲乙两种型号可供选择,有关资料如下:甲型机器购货款为10万元,每年年底支付的维护费用(维修、更换零件)第一年为1000元,第二年为2000元,……(以后每年比上年增加1000元);乙型机器购货款为6万元,每年年底支付的维护费用(大修理等)均为10000元。
(1)若银行利率为i,分别求购买甲乙型机器使用n年总成本(购货款与各年维护费用之和)的现值,并求
(2)若i=5%,两种型号机器均使用10年后就报废,请你决策选用哪种机器(总成本现值较小者)。(参考数据1.05-9=0.6446,1.05-10=0.6139,1.05-11=0.5874) 查看习题详情和答案>>(I)乙队以4:3点球取胜的概率有多大?
(II)设点球中乙队得分为随机变量ξ,求乙队在五个点球中得分ξ的概率分布和数学期望.
查看习题详情和答案>>