摘要:椭圆方程为, 椭圆上点(-.-)和(.-)到P点的距离都等于.
网址:http://m.1010jiajiao.com/timu3_id_4460009[举报]
椭圆C:
+
=1(a>b>0)的离心率为e=
,点A是椭圆上的一点,且点A到椭圆C两焦点的距离之和为4.
(1)求椭圆C的方程;
(2)若P(m,n)(m>0,n>0)为椭圆C上一动点,直线L:mx+4ny-4=0与圆C′:x2+y2=4相交于A、B两点,求三角形OAB面积的最大值及此时直线L的方程.
查看习题详情和答案>>
x2 |
a2 |
y2 |
b2 |
| ||
2 |
(1)求椭圆C的方程;
(2)若P(m,n)(m>0,n>0)为椭圆C上一动点,直线L:mx+4ny-4=0与圆C′:x2+y2=4相交于A、B两点,求三角形OAB面积的最大值及此时直线L的方程.
椭圆
+
=1(a>b>0)上任一点P到两焦点的距离的和为6,离心率为
,A、B分别是椭圆的左右顶点.
(1)求椭圆的标准方程;
(2)设C(x,y)(0<x<a)为椭圆上一动点,D为C关于y轴的对称点,四边形ABCD的面积为S(x),设f(x)=
,求函数f(x)的最大值.
查看习题详情和答案>>
x2 |
a2 |
y2 |
b2 |
2
| ||
3 |
(1)求椭圆的标准方程;
(2)设C(x,y)(0<x<a)为椭圆上一动点,D为C关于y轴的对称点,四边形ABCD的面积为S(x),设f(x)=
[S(x)]2 |
x+3 |
椭圆C:
+
=1(a>b>0)的离心率为e=
,点A是椭圆上的一点,且点A到椭圆C两焦点的距离之和为4.
(1)求椭圆C的方程;
(2)若P(m,n)(m>0,n>0)为椭圆C上一动点,直线L:mx+4ny-4=0与圆C′:x2+y2=4相交于A、B两点,求三角形OAB面积的最大值及此时直线L的方程.
查看习题详情和答案>>
x2 |
a2 |
y2 |
b2 |
| ||
2 |
(1)求椭圆C的方程;
(2)若P(m,n)(m>0,n>0)为椭圆C上一动点,直线L:mx+4ny-4=0与圆C′:x2+y2=4相交于A、B两点,求三角形OAB面积的最大值及此时直线L的方程.