摘要:18.如图.在长方体ABCD-A1B1C1D1中.AD-AA1-A.AB=2.点E在棱AB上移动. (1)证明:D1E⊥A1D (2)AE等于何值时.二面角D1-EC-D的大小为
网址:http://m.1010jiajiao.com/timu3_id_4458394[举报]
(本小题满分14分)
如图,在长方体ABCD-A1B1C1D1中,AD=AA1=1,AB=2,点E在棱AB上移动.
(Ⅰ) 证明:BC1//平面ACD1;
(Ⅱ)证明:A1D⊥D1E;
(Ⅲ) 当E为AB的中点时,求点E到面 ACD1的距离.
查看习题详情和答案>>
(本小题满分14分)
如图,在长方体ABCD-A1B1C1D1中,AD=AA1=1,AB=2,点E在棱AB上移动.
(Ⅰ) 证明:BC1//平面ACD1;
(Ⅱ)证明:A1D⊥D1E;
(Ⅲ) 当E为AB的中点时,求点E到面 ACD1的距离.
如图,在长方体ABCD-A1B1C1D1中,AD=AA1=1,AB=2,点E在棱AB上移动.
(Ⅰ) 证明:BC1//平面ACD1;
(Ⅱ)证明:A1D⊥D1E;
(Ⅲ) 当E为AB的中点时,求点E到面 ACD1的距离.
(本小题满分14分)
如图,在六面体ABCD-A1B1C1D1中,四边形ABCD是边长为2的正方形,四边形A1B1C1D1是边长为1的正方形,DD1⊥平面A1B1C1D1,DD1⊥平面ABCD,DD1=2.
(Ⅰ)求证:A1C1与AC共面,B1D1与BD共面;
(Ⅱ)求证:平面A1ACC1⊥平面B1BDD1;
(Ⅲ)求二面角A-BB1-C的大小(用反三角函数值表示).
![]()
查看习题详情和答案>>
(本小题满分14分)如图,在六面体ABCD-A1B1C1D1中,四边形ABCD是边长为2的正方形,四边形A1B1C1D1是边长为1的正方形,DD1⊥平面A1B1C1D1,DD1⊥平面ABCD,DD1=2.

(Ⅰ)求证:A1C1与AC共面,B1D1与BD共面;
(Ⅱ)求证:平面A1ACC1⊥平面B1BDD1;
(Ⅲ)求二面角A-BB1-C的大小(用反三角函数值表示).
(Ⅰ)求证:A1C1与AC共面,B1D1与BD共面;
(Ⅱ)求证:平面A1ACC1⊥平面B1BDD1;
(Ⅲ)求二面角A-BB1-C的大小(用反三角函数值表示).
(本小题满分14分) 如图:在四棱锥P-ABCD中,底面为正方形,PC与底面ABCD垂直(图1),图2为该四棱锥的主视图和侧视图,它们是腰长为6cm的全等的等腰直角三角形.
|
|
(1)根据图2所给的主视图、侧视图画出相应的俯视图,并求出该俯视图所在的平面图形的面积.
(2)图3中,L、E均为棱PB上的点,且
,
,M、N分别为棱PA 、PD的中点,问在底面正方形的对角线AC上是否存在一点F,使EF//平面LMN. 若存在,请具体求出CF的长度;若不存在,请说明理由.
查看习题详情和答案>>