2009年高考数学难点突破专题辅导三十一

难点31  数学归纳法解题

数学归纳法是高考考查的重点内容之一.类比与猜想是应用数学归纳法所体现的比较突出的思想,抽象与概括,从特殊到一般是应用的一种主要思想方法.

●难点磁场

(★★★★)是否存在abc使得等式1?22+2?32+…+n(n+1)2=6ec8aac122bd4f6e(an2+bn+c).

●案例探究

[例1]试证明:不论正数abc是等差数列还是等比数列,当n>1,nN*abc互不相等时,均有:an+cn>2bn.

命题意图:本题主要考查数学归纳法证明不等式,属★★★★级题目.

知识依托:等差数列、等比数列的性质及数学归纳法证明不等式的一般步骤.

错解分析:应分别证明不等式对等比数列或等差数列均成立,不应只证明一种情况.

技巧与方法:本题中使用到结论:(akck)(ac)>0恒成立(abc为正数),从而ak+1+ck+1ak?c+ck?a.

证明:(1)设abc为等比数列,a=6ec8aac122bd4f6e,c=bq(q>0且q≠1)

an+cn=6ec8aac122bd4f6e+bnqn=bn(6ec8aac122bd4f6e+qn)>2bn

(2)设abc为等差数列,则2b=a+c猜想6ec8aac122bd4f6e>(6ec8aac122bd4f6e)n(n≥2且nN*)

下面用数学归纳法证明:

①当n=2时,由2(a2+c2)>(a+c)2,∴6ec8aac122bd4f6e

②设n=k时成立,即6ec8aac122bd4f6e

则当n=k+1时,6ec8aac122bd4f6e (ak+1+ck+1+ak+1+ck+1)

6ec8aac122bd4f6e(ak+1+ck+1+ak?c+ck?a)=6ec8aac122bd4f6e(ak+ck)(a+c)

>(6ec8aac122bd4f6e)k?(6ec8aac122bd4f6e)=(6ec8aac122bd4f6e)k+1

[例2]在数列{an}中,a1=1,当n≥2时,an,Sn,Sn6ec8aac122bd4f6e成等比数列.

(1)求a2,a3,a4,并推出an的表达式;

(2)用数学归纳法证明所得的结论;

(3)求数列{an}所有项的和.

命题意图:本题考查了数列、数学归纳法、数列极限等基础知识.

知识依托:等比数列的性质及数学归纳法的一般步骤.采用的方法是归纳、猜想、证明.

错解分析:(2)中,Sk=-6ec8aac122bd4f6e应舍去,这一点往往容易被忽视.

技巧与方法:求通项可证明{6ec8aac122bd4f6e}是以{6ec8aac122bd4f6e}为首项,6ec8aac122bd4f6e为公差的等差数列,进而求得通项公式.

解:∵an,Sn,Sn6ec8aac122bd4f6e成等比数列,∴Sn2=an?(Sn6ec8aac122bd4f6e)(n≥2)                       (*)

(1)由a1=1,S2=a1+a2=1+a2,代入(*)式得:a2=-6ec8aac122bd4f6e

a1=1,a2=-6ec8aac122bd4f6e,S3=6ec8aac122bd4f6e+a3代入(*)式得:a3=-6ec8aac122bd4f6e

同理可得:a4=-6ec8aac122bd4f6e,由此可推出:an=6ec8aac122bd4f6e

(2)①当n=1,2,3,4时,由(*)知猜想成立.

②假设n=k(k≥2)时,ak=-6ec8aac122bd4f6e成立

Sk2=-6ec8aac122bd4f6e?(Sk6ec8aac122bd4f6e)

∴(2k-3)(2k-1)Sk2+2Sk-1=0

Sk=6ec8aac122bd4f6e (舍)

Sk+12=ak+1?(Sk+16ec8aac122bd4f6e),得(Sk+ak+1)2=ak+1(ak+1+Sk6ec8aac122bd4f6e)

6ec8aac122bd4f6e

由①②知,an=6ec8aac122bd4f6e对一切nN成立.

(3)由(2)得数列前n项和Sn=6ec8aac122bd4f6e,∴S=6ec8aac122bd4f6eSn=0.

●锦囊妙记

(1)数学归纳法的基本形式

P(n)是关于自然数n的命题,若

P(n0)成立(奠基)

2°假设P(k)成立(kn0),可以推出P(k+1)成立(归纳),则P(n)对一切大于等于n0的自然数n都成立.

(2)数学归纳法的应用

具体常用数学归纳法证明:恒等式,不等式,数的整除性,几何中计算问题,数列的通项与和等.

●歼灭难点训练

一、选择题

1.(★★★★★)已知f(n)=(2n+7)?3n+9,存在自然数m,使得对任意nN,都能使m整除f(n),则最大的m的值为(    )

试题详情

A.30                                   B.26                            C.36                                   D.6

试题详情

2.(★★★★)用数学归纳法证明3kn3(n≥3,nN)第一步应验证(    )

A.n=1                          B.n=2                   C.n=3                          D.n=4

试题详情

二、填空题

3.(★★★★★)观察下列式子:6ec8aac122bd4f6e…则可归纳出_________.

试题详情

4.(★★★★)已知a1=6ec8aac122bd4f6e,an+1=6ec8aac122bd4f6e,则a2,a3,a4,a5的值分别为_________,由此猜想an=_________.

试题详情

三、解答题

5.(★★★★)用数学归纳法证明46ec8aac122bd4f6e+3n+2能被13整除,其中nN*.

试题详情

6.(★★★★)若n为大于1的自然数,求证:6ec8aac122bd4f6e.

试题详情

7.(★★★★★)已知数列{bn}是等差数列,b1=1,b1+b2+…+b10=145.

(1)求数列{bn}的通项公式bn;

试题详情

(2)设数列{an}的通项an=loga(1+6ec8aac122bd4f6e)(其中a>0且a≠1)记Sn是数列{an}的前n项和,试比较Sn6ec8aac122bd4f6elogabn+1的大小,并证明你的结论.

试题详情

8.(★★★★★)设实数q满足|q|<1,数列{an}满足:a1=2,a2≠0,an?an+1=-qn,求an表达式,又如果6ec8aac122bd4f6eS2n<3,求q的取值范围.

 

试题详情

难点磁场

解:假设存在abc使题设的等式成立,这时令n=1,2,3,有6ec8aac122bd4f6e

于是,对n=1,2,3下面等式成立

1?22+2?32+…+n(n+1)2=6ec8aac122bd4f6e

Sn=1?22+2?32+…+n(n+1)2

n=k时上式成立,即Sk=6ec8aac122bd4f6e (3k2+11k+10)

那么Sk+1=Sk+(k+1)(k+2)2=6ec8aac122bd4f6e(k+2)(3k+5)+(k+1)(k+2)2

=6ec8aac122bd4f6e (3k2+5k+12k+24)

=6ec8aac122bd4f6e[3(k+1)2+11(k+1)+10]

也就是说,等式对n=k+1也成立.

综上所述,当a=3,b=11,c=10时,题设对一切自然数n均成立.

歼灭难点训练

一、1.解析:∵f(1)=36,f(2)=108=3×36,f(3)=360=10×36

f(1),f(2),f(3)能被36整除,猜想f(n)能被36整除.

证明:n=1,2时,由上得证,设n=k(k≥2)时,

f(k)=(2k+7)?3k+9能被36整除,则n=k+1时,

f(k+1)-f(k)=(2k+9)?3k+1?-(2k+7)?3k

=(6k+27)?3k-(2k+7)?3k

=(4k+20)?3k=36(k+5)?3k2?(k≥2)

6ec8aac122bd4f6ef(k+1)能被36整除

f(1)不能被大于36的数整除,∴所求最大的m值等于36.

答案:C

2.解析:由题意知n≥3,∴应验证n=3.

答案:C

二、3.解析:6ec8aac122bd4f6e

6ec8aac122bd4f6e

6ec8aac122bd4f6e(nN*)

6ec8aac122bd4f6e(nN*)

6ec8aac122bd4f6e

6ec8aac122bd4f6e6ec8aac122bd4f6e6ec8aac122bd4f6e6ec8aac122bd4f6e  6ec8aac122bd4f6e

三、5.证明:(1)当n=1时,42×1+1+31+2=91能被13整除

(2)假设当n=k时,42k+1+3k+2能被13整除,则当n=k+1时,

42(k+1)+1+3k+3=42k+1?42+3k+2?3-42k+1?3+42k+1?3

=42k+1?13+3?(42k+1+3k+2?)

∵42k+1?13能被13整除,42k+1+3k+2能被13整除

∴当n=k+1时也成立.

由①②知,当nN*时,42n+1+3n+2能被13整除.

6.证明:(1)当n=2时,6ec8aac122bd4f6e

(2)假设当n=k时成立,即6ec8aac122bd4f6e

6ec8aac122bd4f6e

7.(1)解:设数列{bn}的公差为d,由题意得6ec8aac122bd4f6e,∴bn=3n-2

(2)证明:由bn=3n-2知

Sn=loga(1+1)+loga(1+6ec8aac122bd4f6e)+…+loga(1+6ec8aac122bd4f6e)

=loga[(1+1)(1+6ec8aac122bd4f6e)…(1+ 6ec8aac122bd4f6e)]

6ec8aac122bd4f6elogabn+1=loga6ec8aac122bd4f6e,于是,比较Sn6ec8aac122bd4f6elogabn+1?的大小6ec8aac122bd4f6e比较(1+1)(1+6ec8aac122bd4f6e)…(1+6ec8aac122bd4f6e)与6ec8aac122bd4f6e的大小.

n=1,有(1+1)=6ec8aac122bd4f6e

n=2,有(1+1)(1+6ec8aac122bd4f6e

推测:(1+1)(1+6ec8aac122bd4f6e)…(1+6ec8aac122bd4f6e)>6ec8aac122bd4f6e (*)

①当n=1时,已验证(*)式成立.

②假设n=k(k≥1)时(*)式成立,即(1+1)(1+6ec8aac122bd4f6e)…(1+6ec8aac122bd4f6e)>6ec8aac122bd4f6e

则当n=k+1时,6ec8aac122bd4f6e

6ec8aac122bd4f6e

6ec8aac122bd4f6e

6ec8aac122bd4f6e,即当n=k+1时,(*)式成立

由①②知,(*)式对任意正整数n都成立.

于是,当a>1时,Sn6ec8aac122bd4f6elogabn+1?,当 0<a<1时,Sn6ec8aac122bd4f6elogabn+1?

8.解:∵a1?a2=-q,a1=2,a2≠0,

q≠0,a2=-6ec8aac122bd4f6e,

an?an+1=-qn,an+1?an+2=-qn+1?

两式相除,得6ec8aac122bd4f6e,即an+2=q?an

于是,a1=2,a3=2?q,a5=2?qn…猜想:a2n+1=-6ec8aac122bd4f6eqn(n=1,2,3,…)

综合①②,猜想通项公式为an=6ec8aac122bd4f6e

下证:(1)当n=1,2时猜想成立

(2)设n=2k-1时,a2k1=2?qk1n=2k+1时,由于a2k+1=q?a2k1?

a2k+1=2?qkn=2k-1成立.

可推知n=2k+1也成立.

n=2k时,a2k=-6ec8aac122bd4f6eqk,则n=2k+2时,由于a2k+2=q?a2k?,

所以a2k+2=-6ec8aac122bd4f6eqk+1,这说明n=2k成立,可推知n=2k+2也成立.

综上所述,对一切自然数n,猜想都成立.

这样所求通项公式为an=6ec8aac122bd4f6e

S2n=(a1+a3…+a2n1)+(a2+a4+…+a2n)

=2(1+q+q2+…+qn-1?)-6ec8aac122bd4f6e (q+q2+…+qn)

6ec8aac122bd4f6e

由于|q|<1,∴6ec8aac122bd4f6e=6ec8aac122bd4f6e

依题意知6ec8aac122bd4f6e<3,并注意1-q>0,|q|<1解得-1<q<0或0<q6ec8aac122bd4f6e

 

 

难点31  数学归纳法解题

数学归纳法是高考考查的重点内容之一.类比与猜想是应用数学归纳法所体现的比较突出的思想,抽象与概括,从特殊到一般是应用的一种主要思想方法.

●难点磁场

(★★★★)是否存在abc使得等式1?22+2?32+…+n(n+1)2=6ec8aac122bd4f6e(an2+bn+c).

●案例探究

[例1]试证明:不论正数abc是等差数列还是等比数列,当n>1,nN*abc互不相等时,均有:an+cn>2bn.

命题意图:本题主要考查数学归纳法证明不等式,属★★★★级题目.

知识依托:等差数列、等比数列的性质及数学归纳法证明不等式的一般步骤.

错解分析:应分别证明不等式对等比数列或等差数列均成立,不应只证明一种情况.

技巧与方法:本题中使用到结论:(akck)(ac)>0恒成立(abc为正数),从而ak+1+ck+1ak?c+ck?a.

证明:(1)设abc为等比数列,a=6ec8aac122bd4f6e,c=bq(q>0且q≠1)

an+cn=6ec8aac122bd4f6e+bnqn=bn(6ec8aac122bd4f6e+qn)>2bn

(2)设abc为等差数列,则2b=a+c猜想6ec8aac122bd4f6e>(6ec8aac122bd4f6e)n(n≥2且nN*)

下面用数学归纳法证明:

①当n=2时,由2(a2+c2)>(a+c)2,∴6ec8aac122bd4f6e

②设n=k时成立,即6ec8aac122bd4f6e

则当n=k+1时,6ec8aac122bd4f6e (ak+1+ck+1+ak+1+ck+1)

6ec8aac122bd4f6e(ak+1+ck+1+ak?c+ck?a)=6ec8aac122bd4f6e(ak+ck)(a+c)

>(6ec8aac122bd4f6e)k?(6ec8aac122bd4f6e)=(6ec8aac122bd4f6e)k+1

[例2]在数列{an}中,a1=1,当n≥2时,an,Sn,Sn6ec8aac122bd4f6e成等比数列.

(1)求a2,a3,a4,并推出an的表达式;

(2)用数学归纳法证明所得的结论;

(3)求数列{an}所有项的和.

命题意图:本题考查了数列、数学归纳法、数列极限等基础知识.

知识依托:等比数列的性质及数学归纳法的一般步骤.采用的方法是归纳、猜想、证明.

错解分析:(2)中,Sk=-6ec8aac122bd4f6e应舍去,这一点往往容易被忽视.

技巧与方法:求通项可证明{6ec8aac122bd4f6e}是以{6ec8aac122bd4f6e}为首项,6ec8aac122bd4f6e为公差的等差数列,进而求得通项公式.

解:∵an,Sn,Sn6ec8aac122bd4f6e成等比数列,∴Sn2=an?(Sn6ec8aac122bd4f6e)(n≥2)                       (*)

(1)由a1=1,S2=a1+a2=1+a2,代入(*)式得:a2=-6ec8aac122bd4f6e

a1=1,a2=-6ec8aac122bd4f6e,S3=6ec8aac122bd4f6e+a3代入(*)式得:a3=-6ec8aac122bd4f6e

同理可得:a4=-6ec8aac122bd4f6e,由此可推出:an=6ec8aac122bd4f6e

(2)①当n=1,2,3,4时,由(*)知猜想成立.

②假设n=k(k≥2)时,ak=-6ec8aac122bd4f6e成立

Sk2=-6ec8aac122bd4f6e?(Sk6ec8aac122bd4f6e)

∴(2k-3)(2k-1)Sk2+2Sk-1=0

Sk=6ec8aac122bd4f6e (舍)

Sk+12=ak+1?(Sk+16ec8aac122bd4f6e),得(Sk+ak+1)2=ak+1(ak+1+Sk6ec8aac122bd4f6e)

6ec8aac122bd4f6e

由①②知,an=6ec8aac122bd4f6e对一切nN成立.

(3)由(2)得数列前n项和Sn=6ec8aac122bd4f6e,∴S=6ec8aac122bd4f6eSn=0.

●锦囊妙记

(1)数学归纳法的基本形式

P(n)是关于自然数n的命题,若

P(n0)成立(奠基)

2°假设P(k)成立(kn0),可以推出P(k+1)成立(归纳),则P(n)对一切大于等于n0的自然数n都成立.

(2)数学归纳法的应用

具体常用数学归纳法证明:恒等式,不等式,数的整除性,几何中计算问题,数列的通项与和等.

●歼灭难点训练

一、选择题

1.(★★★★★)已知f(n)=(2n+7)?3n+9,存在自然数m,使得对任意nN,都能使m整除f(n),则最大的m的值为(    )

A.30                                   B.26                            C.36                                   D.6

2.(★★★★)用数学归纳法证明3kn3(n≥3,nN)第一步应验证(    )

A.n=1                          B.n=2                   C.n=3                          D.n=4

二、填空题

3.(★★★★★)观察下列式子:6ec8aac122bd4f6e…则可归纳出_________.

4.(★★★★)已知a1=6ec8aac122bd4f6e,an+1=6ec8aac122bd4f6e,则a2,a3,a4,a5的值分别为_________,由此猜想an=_________.

三、解答题

5.(★★★★)用数学归纳法证明46ec8aac122bd4f6e+3n+2能被13整除,其中nN*.

6.(★★★★)若n为大于1的自然数,求证:6ec8aac122bd4f6e.

7.(★★★★★)已知数列{bn}是等差数列,b1=1,b1+b2+…+b10=145.

(1)求数列{bn}的通项公式bn;

(2)设数列{an}的通项an=loga(1+6ec8aac122bd4f6e)(其中a>0且a≠1)记Sn是数列{an}的前n项和,试比较Sn6ec8aac122bd4f6elogabn+1的大小,并证明你的结论.

8.(★★★★★)设实数q满足|q|<1,数列{an}满足:a1=2,a2≠0,an?an+1=-qn,求an表达式,又如果6ec8aac122bd4f6eS2n<3,求q的取值范围.

 

参考答案

难点磁场

解:假设存在abc使题设的等式成立,这时令n=1,2,3,有6ec8aac122bd4f6e

于是,对n=1,2,3下面等式成立

1?22+2?32+…+n(n+1)2=6ec8aac122bd4f6e

Sn=1?22+2?32+…+n(n+1)2

n=k时上式成立,即Sk=6ec8aac122bd4f6e (3k2+11k+10)

那么Sk+1=Sk+(k+1)(k+2)2=6ec8aac122bd4f6e(k+2)(3k+5)+(k+1)(k+2)2

=6ec8aac122bd4f6e (3k2+5k+12k+24)

=6ec8aac122bd4f6e[3(k+1)2+11(k+1)+10]

也就是说,等式对n=k+1也成立.

综上所述,当a=3,b=11,c=10时,题设对一切自然数n均成立.

歼灭难点训练

一、1.解析:∵f(1)=36,f(2)=108=3×36,f(3)=360=10×36

f(1),f(2),f(3)能被36整除,猜想f(n)能被36整除.

证明:n=1,2时,由上得证,设n=k(k≥2)时,

f(k)=(2k+7)?3k+9能被36整除,则n=k+1时,

f(k+1)-f(k)=(2k+9)?3k+1?-(2k+7)?3k

=(6k+27)?3k-(2k+7)?3k

=(4k+20)?3k=36(k+5)?3k2?(k≥2)

6ec8aac122bd4f6ef(k+1)能被36整除

f(1)不能被大于36的数整除,∴所求最大的m值等于36.

答案:C

2.解析:由题意知n≥3,∴应验证n=3.

答案:C

二、3.解析:6ec8aac122bd4f6e

6ec8aac122bd4f6e

6ec8aac122bd4f6e(nN*)

6ec8aac122bd4f6e(nN*)

6ec8aac122bd4f6e

6ec8aac122bd4f6e6ec8aac122bd4f6e6ec8aac122bd4f6e6ec8aac122bd4f6e  6ec8aac122bd4f6e

三、5.证明:(1)当n=1时,42×1+1+31+2=91能被13整除

(2)假设当n=k时,42k+1+3k+2能被13整除,则当n=k+1时,

42(k+1)+1+3k+3=42k+1?42+3k+2?3-42k+1?3+42k+1?3

=42k+1?13+3?(42k+1+3k+2?)

∵42k+1?13能被13整除,42k+1+3k+2能被13整除

∴当n=k+1时也成立.

由①②知,当nN*时,42n+1+3n+2能被13整除.

6.证明:(1)当n=2时,6ec8aac122bd4f6e

(2)假设当n=k时成立,即6ec8aac122bd4f6e

6ec8aac122bd4f6e

7.(1)解:设数列{bn}的公差为d,由题意得6ec8aac122bd4f6e,∴bn=3n-2

(2)证明:由bn=3n-2知

Sn=loga(1+1)+loga(1+6ec8aac122bd4f6e)+…+loga(1+6ec8aac122bd4f6e)

=loga[(1+1)(1+6ec8aac122bd4f6e)…(1+ 6ec8aac122bd4f6e)]

6ec8aac122bd4f6elogabn+1=loga6ec8aac122bd4f6e,于是,比较Sn6ec8aac122bd4f6elogabn+1?的大小6ec8aac122bd4f6e比较(1+1)(1+6ec8aac122bd4f6e)…(1+6ec8aac122bd4f6e)与6ec8aac122bd4f6e的大小.

n=1,有(1+1)=6ec8aac122bd4f6e

n=2,有(1+1)(1+6ec8aac122bd4f6e

推测:(1+1)(1+6ec8aac122bd4f6e)…(1+6ec8aac122bd4f6e)>6ec8aac122bd4f6e (*)

①当n=1时,已验证(*)式成立.

②假设n=k(k≥1)时(*)式成立,即(1+1)(1+6ec8aac122bd4f6e)…(1+6ec8aac122bd4f6e)>6ec8aac122bd4f6e

则当n=k+1时,6ec8aac122bd4f6e

6ec8aac122bd4f6e

6ec8aac122bd4f6e

6ec8aac122bd4f6e,即当n=k+1时,(*)式成立

由①②知,(*)式对任意正整数n都成立.

于是,当a>1时,Sn6ec8aac122bd4f6elogabn+1?,当 0<a<1时,Sn6ec8aac122bd4f6elogabn+1?

8.解:∵a1?a2=-q,a1=2,a2≠0,

q≠0,a2=-6ec8aac122bd4f6e,

an?an+1=-qn,an+1?an+2=-qn+1?

两式相除,得6ec8aac122bd4f6e,即an+2=q?an

于是,a1=2,a3=2?q,a5=2?qn…猜想:a2n+1=-6ec8aac122bd4f6eqn(n=1,2,3,…)

综合①②,猜想通项公式为an=6ec8aac122bd4f6e

下证:(1)当n=1,2时猜想成立

(2)设n=2k-1时,a2k1=2?qk1n=2k+1时,由于a2k+1=q?a2k1?

a2k+1=2?qkn=2k-1成立.

可推知n=2k+1也成立.

n=2k时,a2k=-6ec8aac122bd4f6eqk,则n=2k+2时,由于a2k+2=q?a2k?,

所以a2k+2=-6ec8aac122bd4f6eqk+1,这说明n=2k成立,可推知n=2k+2也成立.

综上所述,对一切自然数n,猜想都成立.

这样所求通项公式为an=6ec8aac122bd4f6e

S2n=(a1+a3…+a2n1)+(a2+a4+…+a2n)

=2(1+q+q2+…+qn-1?)-6ec8aac122bd4f6e (q+q2+…+qn)

6ec8aac122bd4f6e

由于|q|<1,∴6ec8aac122bd4f6e=6ec8aac122bd4f6e

依题意知6ec8aac122bd4f6e<3,并注意1-q>0,|q|<1解得-1<q<0或0<q6ec8aac122bd4f6e