ÌâÄ¿ÄÚÈÝ
£¨1£©ÎªÁ˽â¾öÈËÀàÄÜÔ´Ö®Ð裬ʵÏÖÓúËÄÜ´úÌæú¡¢Ê¯Ó͵Ȳ»¿ÉÔÙÉúÄÜÔ´£¬ºÜ¶à¹ú¼Ò¶¼ÔÚÑÐÖÆÈ«³¬µ¼ºË¾Û±ä¡°ÈËÔìÌ«Ñô¡±£¬ËüÊÇ´Óº£Ë®ÖÐÌáÈ¡ÔÁÏ£¬ÔÚÉÏÒڶȵĸßÎÂÏ·¢ÉúµÄ¿É¿ØºË¾Û±ä·´Ó¦£¬¿Æѧ¼ÒÒÀ¾ÝµÄºË·´Ó¦·½³ÌÊÇ
A£®21H+31H¡ú42He+10n
B£®92235U+01n¡ú14156Ba+9236Kr+301n
C£®90234Th¡ú91234Pa+-10e
D£®92238U¡ú90234Th+24He
£¨2£©ÇâÔ×ÓµÚnÄܼ¶µÄÄÜÁ¿ÎªEn=
£¬n=1£¬2¡£®ÆäÖÐE1ÊÇn=1ʱµÄ»ù̬ÄÜÁ¿£¬ÈôÒ»ÇâÔ×Ó·¢ÉäÄÜÁ¿Îª-
E1µÄ¹â×Ӻ󣬴¦ÓڱȻù̬ÄÜÁ¿¸ß³ö-
E1µÄ¼¤·¢Ì¬£¬ÔòÇâÔ×Ó·¢Éä¹â×ÓÇ°´¦ÓÚµÚ
£¨3£©ÈçͼËùʾ£¬»¬¿éA¡¢BµÄÖÊÁ¿·Ö±ðΪm1ºÍm2£¬ÓÉÇáÖʵ¯»ÉÏàÁ¬£¬ÖÃÓڹ⻬ˮƽÃæÉÏ£¬°ÑÁ½»¬¿éÀÖÁ×î½ü£¬Ê¹µ¯»É´¦ÓÚ×î´óѹËõ״̬ºóÓÃÒ»ÇáÉþ°ó½ô£¬Á½»¬¿éÒ»ÆðÒԺ㶨µÄËÙÂÊv0ÏòÓÒ»¬¶¯£®ÈôͻȻ¶Ï¿ªÇáÉþ£¬µ±µ¯»ÉµÚÒ»´Î»Ö¸´Ô³¤Ê±£¬»¬¿éAµÄ¶¯ÄܱäΪÔÀ´µÄ
£¬Ç󵯻ɵÚÒ»´Î»Ö¸´µ½Ô³¤Ê±BµÄËٶȣ®
A
A
£®A£®21H+31H¡ú42He+10n
B£®92235U+01n¡ú14156Ba+9236Kr+301n
C£®90234Th¡ú91234Pa+-10e
D£®92238U¡ú90234Th+24He
£¨2£©ÇâÔ×ÓµÚnÄܼ¶µÄÄÜÁ¿ÎªEn=
E1 |
n2 |
3 |
16 |
3 |
4 |
4
4
Äܼ¶£¬·¢Éä¹â×Óºó´¦ÓÚµÚ2
2
Äܼ¶£®£¨3£©ÈçͼËùʾ£¬»¬¿éA¡¢BµÄÖÊÁ¿·Ö±ðΪm1ºÍm2£¬ÓÉÇáÖʵ¯»ÉÏàÁ¬£¬ÖÃÓڹ⻬ˮƽÃæÉÏ£¬°ÑÁ½»¬¿éÀÖÁ×î½ü£¬Ê¹µ¯»É´¦ÓÚ×î´óѹËõ״̬ºóÓÃÒ»ÇáÉþ°ó½ô£¬Á½»¬¿éÒ»ÆðÒԺ㶨µÄËÙÂÊv0ÏòÓÒ»¬¶¯£®ÈôͻȻ¶Ï¿ªÇáÉþ£¬µ±µ¯»ÉµÚÒ»´Î»Ö¸´Ô³¤Ê±£¬»¬¿éAµÄ¶¯ÄܱäΪÔÀ´µÄ
1 |
4 |
·ÖÎö£º£¨1£©È˹¤ÈȺ˾۱äÊÇÔÚÉÏÒÚÉãÊ϶ȵĸßÎÂÌõ¼þÏ£¬ÀûÓÃÇâµÄͬλËØ뮡¢ë°µÄºË¾Û±ä£®·´Ó¦ºóµÄÉú³ÉÎïÊÇÎÞ·ÅÉäÐÔÎÛȾµÄº¤£®ÓÉÓÚ·´Ó¦¶Ñζȸߣ¬ÊͷųöÀ´µÄºËÄܶ࣬Ë׳ơ°ÈËÔìÌ«Ñô¡±£®
£¨2£©ÓÉÌâµÃµ½·¢Éä¹â×ÓºóÇâÔ×ÓÄÜÁ¿ÎªE=E1+£¨-
E1£©=
£¬¸ù¾ÝÇâÔ×ÓµÚnÄܼ¶µÄÄÜÁ¿ÎªEn=
£¬·ÖÎönµÄÊýÖµ£¬ÅжϷ¢Éä¹â×ÓºóÇâÔ×ÓËù´¦µÄÄܼ¶£®¸ù¾Ý²£¶ûÀíÂÛÇâÔ×Ó·¢Éä¹â×ÓÄÜÁ¿E=Em-En£¨m£¾n£©£¬µÃµ½ÇâÔ×Ó·¢Éä¹â×ÓÇ°ÄÜÁ¿£¬ÔÙÅжÏÄܼ¶£®
£¨3£©Ï¸Ï߶Ͽªºó£¬µ¯»É»Ö¸´Ô³¤Ç°£¬µ¯»É¶ÔA¡¢BÓÐÏòÁ½²àµÄµ¯Á¦£¬¹ÊÎï¿éB¼ÓËÙ£¬ÎïÌåA¼õËÙ²¢ÇÒ·´Ïò¼ÓËÙµ½¶¯ÄܱäΪ
£»¸ù¾ÝÌâÒ⣬Çó³öA»¬¿é¿ÉÄܵÄËٶȣ¬È»ºó¸ù¾Ý¶¯Á¿Êغ㶨ÂÉÁÐʽ²¢½áºÏʵ¼ÊÇé¿ö½øÐзÖÎö£®
£¨2£©ÓÉÌâµÃµ½·¢Éä¹â×ÓºóÇâÔ×ÓÄÜÁ¿ÎªE=E1+£¨-
3 |
4 |
E1 |
4 |
E1 |
n2 |
£¨3£©Ï¸Ï߶Ͽªºó£¬µ¯»É»Ö¸´Ô³¤Ç°£¬µ¯»É¶ÔA¡¢BÓÐÏòÁ½²àµÄµ¯Á¦£¬¹ÊÎï¿éB¼ÓËÙ£¬ÎïÌåA¼õËÙ²¢ÇÒ·´Ïò¼ÓËÙµ½¶¯ÄܱäΪ
1 |
4 |
½â´ð£º½â£º£¨1£©È˹¤ÈȺ˾۱äÊÇÔÚÉÏÒÚÉãÊ϶ȵĸßÎÂÌõ¼þÏ£¬ÀûÓÃÇâµÄͬλËØ뮡¢ë°µÄºË¾Û±ä£®·´Ó¦ºóµÄÉú³ÉÎïÊÇÎÞ·ÅÉäÐÔÎÛȾµÄº¤£®¹ÊÑ¡A
£¨2£©ÓÉÌâµÃµ½·¢Éä¹â×ÓºóÇâÔ×ÓÄÜÁ¿ÎªE=E1+£¨-
E1£©=
£¬¸ù¾Ý²£¶ûÀíÂÛÇâÔ×Ó·¢Éä¹â×ÓÄÜÁ¿E=Em-En£¨m£¾n£©£¬µÃµ½ÇâÔ×Ó·¢Éä¹â×ÓÇ°µÄÄÜÁ¿E¡ä=
+£¨-
E1£©=
£®¸ù¾ÝÇâÔ×ÓµÚnÄܼ¶µÄÄÜÁ¿ÎªEn=
£¬µÃµ½·¢Éä¹â×ÓÇ°n=4£¬·¢Éä¹â×Óºón=2£®
£¨3£©A»¬¿é¶¯ÄÜΪ³õ̬µÄ
£¬É軬¿éA´ËʱËÙÂÊΪv£¬B»¬¿éµÄËÙ¶ÈΪvB
¶ÔA»¬¿éÓÐ
mv02=
?
mv2
½âµÃ£ºv=¡À
v0
¶ÔϵͳÓÐ
2m1v0=m1v+m2vB
½âµÃ
vB=
»òvB=
´ð£º£¨1£©A£»£¨2£©4£»2£»£¨3£©µ¯»ÉµÚÒ»´Î»Ö¸´µ½Ô³¤Ê±BµÄËÙ¶ÈΪ
»ò
£¨2£©ÓÉÌâµÃµ½·¢Éä¹â×ÓºóÇâÔ×ÓÄÜÁ¿ÎªE=E1+£¨-
3 |
4 |
E1 |
4 |
E1 |
4 |
3 |
16 |
E1 |
16 |
E1 |
n2 |
£¨3£©A»¬¿é¶¯ÄÜΪ³õ̬µÄ
1 |
4 |
¶ÔA»¬¿éÓÐ
1 |
2 |
1 |
4 |
1 |
2 |
½âµÃ£ºv=¡À
1 |
2 |
¶ÔϵͳÓÐ
2m1v0=m1v+m2vB
½âµÃ
vB=
| ||
m2 |
| ||
m2 |
´ð£º£¨1£©A£»£¨2£©4£»2£»£¨3£©µ¯»ÉµÚÒ»´Î»Ö¸´µ½Ô³¤Ê±BµÄËÙ¶ÈΪ
| ||
m2 |
| ||
m2 |
µãÆÀ£º£¨1£©±¾Ìâ×¢Òâ¡°ÈËÔìÌ«Ñô¡±£¬ÊÇ´Óº£Ë®ÖÐÌáÈ¡ÔÁÏ£¬º£Ë®ÖÐÇâµÄͬλËØ뮡¢ë°º¬Á¿³ä×㣻
£¨2£©±¾Ì⿼²é¶Ô²£¶ûÀíÂÛµÄÀí½âºÍÓ¦ÓÃÄÜÁ¦£¬ÄѶÈÊÊÖУ»
£¨3£©±¾Ìâ¹Ø¼ü¸ù¾Ý¶¯Á¿Êغ㶨ÂÉÁÐʽ²¢¸ù¾Ýʵ¼ÊÇé¿ö½øÐзÖÎö£®
£¨2£©±¾Ì⿼²é¶Ô²£¶ûÀíÂÛµÄÀí½âºÍÓ¦ÓÃÄÜÁ¦£¬ÄѶÈÊÊÖУ»
£¨3£©±¾Ìâ¹Ø¼ü¸ù¾Ý¶¯Á¿Êغ㶨ÂÉÁÐʽ²¢¸ù¾Ýʵ¼ÊÇé¿ö½øÐзÖÎö£®
Á·Ï°²áϵÁдð°¸
Ïà¹ØÌâÄ¿