ÌâÄ¿ÄÚÈÝ
(10·Ö)ÔÚÕæ¿ÕÖÐˮƽ·ÅÖóäµçµÄƽÐаåµçÈÝÆ÷£¬Á½¼«°å¼äÓÐÒ»¸ö´øµçÓ͵Σ¬µçÈÝÆ÷Á½°å¼ä¾àΪd£¬Èçͼ21Ëùʾ¡£µ±Æ½ÐаåµçÈÝÆ÷µÄµçѹΪU0ʱ£¬Ó͵α£³Ö¾²Ö¹×´Ì¬£»µ±¸øµçÈÝÆ÷ͻȻ¼ÌÐø³äµçʹÆäµçѹÔö¼ÓDU1£¬Ó͵οªÊ¼ÏòÉÏÔ˶¯£»¾Ê±¼äDtºó£¬µçÈÝÆ÷ͻȻ·ÅµçʹÆäµçѹ¼õÉÙDU2£¬ÓÖ¾¹ýʱ¼äDt£¬Ó͵ÎÇ¡ºÃ»Øµ½ÔÀ´Î»Ö᣼ÙÉèÓ͵ÎÔÚÔ˶¯¹ý³ÌÖÐûÓÐʧȥµçºÉ£¬³äµçºÍ·ÅµçµÄ¹ý³Ì¾ùºÜ¶Ì£¬Õâ¶Îʱ¼äÄÚÓ͵εÄλÒƿɺöÂÔ²»¼Æ¡£ÖØÁ¦¼ÓËÙ¶ÈΪg¡£ÊÔÇó£º
£¨1£©´øµçÓ͵ÎËù´øµçºÉÁ¿ÓëÖÊÁ¿Ö®±È£»
£¨2£©µÚÒ»¸öDtÓëµÚ¶þ¸öDtÓ͵μÓËٶȴóС֮±È£»
£¨3£©DU1ÓëDU2Ö®±È¡£
£¨10·Ö£©
½â£º£¨1£©Ó͵ξ²Ö¹Ê± (2·Ö)
Ôò (1·Ö)
£¨2£©ÉèµÚÒ»¸öDtÄÚÓ͵εÄλÒÆΪx1£¬¼ÓËÙ¶ÈΪa1£¬µÚ¶þ¸öDtÄÚÓ͵εÄλÒÆΪx2£¬¼ÓËÙ¶ÈΪa2£¬Ôò
£¬£¬ (1·Ö)
ÇÒ v1=a1Dt£¬ x2=-x1 (1·Ö)
½âµÃ a1:a2=1:3 (1·Ö)
£¨3£©Ó͵ÎÏòÉϼÓËÙÔ˶¯Ê±£º£¬¼´ (1·Ö)
Ó͵ÎÏòÉϼõËÙÔ˶¯Ê±
£¬¼´ (1·Ö)
Ôò (1·Ö)
½âµÃ (1·Ö)