题目内容

如图18所示,光滑的平行金属导轨水平放置,电阻不计,导轨间距为l,左侧接一阻值为R的电阻.区域cdef内存在垂直轨道平面向下的有界匀强磁场,磁场宽度为x.一质量为m、电阻为r的金属棒MN置于轨道上,与导轨垂直且接触良好,受到水平拉力F=(0.5v+0.4) N(v为某时刻金属棒运动的瞬时速度)的作用,从磁场的左边界由静止开始运动.已知l=1 m,m=1 kg,R=0.3 Ω,r=0.2 Ω,x=0.8 m,如果测得电阻R两端的电压U随着时间是均匀增大的,那么:

(1)分析并说明该金属棒在磁场中做何种运动;

(2)金属棒到达ef处的速度应该有多大;

(3)分析并求解磁感应强度B的大小.

 

(1)做初速度为零的匀加速直线运动(2)0.8m/s(3)0.5 T

解析:(1) (3分)因电阻两端的电压U随着时间t是均匀增大的,即:

,即

所以,于是可以断定:金属棒必做初速度为零的匀加速直线运动

(2) (4分)设金属棒运动的加速度为a,在t=0时v=0,应用牛顿第二定律有

0.4 N=ma

解得a=0.4 m/s2

所以由v=2ax,解得vef=0.8m/s.

(3) (4分)根据题意,在金属棒运动的一般状态下,应用牛顿第二定律有:

(0.5v+0.4)-=ma

又因为ma=0.4为恒量,所以必有0.5=

解得B=0.5 T.

 

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网