题目内容
如图所示,光滑水平轨道上放置长木板A(上表面粗糙)和滑块C,滑块B置于A的左端,三者质量分别为、、。开始时C静止,A、B一起以的速度匀速向右运动,A与C发生碰撞(时间极短)后C向右运动,经过一段时间,A、B再次达到共同速度一起向右运动,且恰好不再与C碰撞。求A与C发生碰撞后瞬间A的速度大小。
【答案】见解析
因碰撞时间极短,A与C碰撞过程动量守恒,设碰后瞬间A的速度为vA,C的速度为vC,以向右为正方向,由动量守恒定律得
A与B在摩擦力作用下达到共同速度,设共同速度为vAB,由动量守恒定律得
A与B达到共同速度后恰好不再与C碰撞,应满足
联立式,代入数据得
练习册系列答案
相关题目