【题目】一个多面体的三视图正视图、侧视图、俯视图如图所示,M,N分别是,的中点.
(1)求证:平面;
(2)求证:平面;
(3)若这个多面体的六个顶点A,B,C,,,都在同一个球面上,求这个球的体积.
【题目】试比较下面概率的大小:
(1)如果以连续掷两次骰子依次得到的点数m,n作为点P的横、纵坐标,点P在直线的下面包括直线的概率;
(2)在正方形,,x,,随机地投掷点P,求点P落在正方形T内直线的下面包括直线的概率.
【题目】已知函数,.
求证:对恒成立;
若,若,,求证:
【题目】如图1,在正方形中,是的中点,点在线段上,且.若将 分别沿折起,使两点重合于点,如图2.
图1 图2
(1)求证:平面;
(2)求直线与平面所成角的正弦值.
【题目】已知椭圆 的焦点坐标分別为,,为椭圆上一点,满足且
(1) 求椭圆的标准方程:
(2) 设直线与椭圆交于两点,点,若,求的取值范围.
【题目】2016年某市政府出台了“2020年创建全国文明城市(简称创文)”的具体规划,今日,作为“创文”项目之一的“市区公交站点的重新布局及建设”基本完成,市有关部门准备对项目进行调查,并根据调查结果决定是否验收,调查人员分别在市区的各公交站点随机抽取若干市民对该项目进行评分,并将结果绘制成如图所示的频率分布直方图,相关规则为:①调查对象为本市市民,被调查者各自独立评分;②采用百分制评分, 内认定为满意,80分及以上认定为非常满意;③市民对公交站点布局的满意率不低于60%即可进行验收;④用样本的频率代替概率.
(1)求被调查者满意或非常满意该项目的频率;
(2)若从该市的全体市民中随机抽取3人,试估计恰有2人非常满意该项目的概率;
(3)已知在评分低于60分的被调查者中,老年人占,现从评分低于60分的被调查者中按年龄分层抽取9人以便了解不满意的原因,并从中选取2人担任群众督察员,记为群众督查员中老年人的人数,求随机变量的分布列及其数学期望.
【题目】如图,将边长为1的正方形ABCD沿x轴正向滚动,先以A为中心顺时针旋转,当B落在x轴时,又以B为中心顺时针旋转,如此下去,设顶点C滚动时的曲线方程为,则下列说法不正确的是
A.恒成立B.
C.D.
【题目】如图为我国数学家赵爽约3世纪初在为《周髀算经》作注时验证勾股定理的示意图,现在提供5种颜色给其中5个小区域涂色,规定每个区域只涂一种颜色,相邻区域颜色不同,则区域涂色不相同的概率为
A. B. C. D.
【题目】定义(,)为有限实数列的波动强度.
(1)求数列1,4,2,3的波动强度;
(2)若数列,,,满足,判断是否正确,如果正确请证明,如果错误请举出反例;
(3)设数列,,,是数列,,,,的一个排列,求的最大值,并说明理由.
【题目】已知曲线,过点作直线和曲线交于、两点.
(1)求曲线的焦点到它的渐近线之间的距离;
(2)若,点在第一象限,轴,垂足为,连结,求直线倾斜角的取值范围;
(3)过点作另一条直线,和曲线交于、两点,问是否存在实数,使得和同时成立?如果存在,求出满足条件的实数的取值集合,如果不存在,请说明理由.