【题目】已知正方体有8个不同顶点,现任意选择其中4个不同顶点,然后将它们两两相连,可组成平面图形成空间几何体.在组成的空间几何体中,可以是下列空间几何体中的________.(写出所有正确结论的编号)
①每个面都是直角三角形的四面体;
②每个面都是等边三角形的四面体;
③每个面都是全等的直角三角形的四面体;
④有三个面为等腰直角三角形,有一个面为等边三角形的四面体.
【题目】已知椭圆的半焦距为,圆与椭圆有且仅有两个公共点,直线与椭圆只有一个公共点.
(1)求椭圆的标准方程;
(2)已知动直线过椭圆的左焦点,且与椭圆分别交于两点,试问:轴上是否存在定点,使得为定值?若存在,求出该定值和点的坐标;若不存在,请说明理由.
【题目】已知函数f(x)=|x﹣2|﹣t,t∈R,g(x)=|x+3|.
(1)x∈R,有f(x)≥g(x),求实数t的取值范围;
(2)若不等式f(x)≤0的解集为[1,3],正数a、b满足ab﹣2a﹣b=2t﹣2,求a+2b的最小值.
【题目】手机运动计步已经成为一种新时尚.某单位统计了职工一天行走步数(单位:百步),绘制出如下频率分布直方图:
(1)求直方图中a的值,并由频率分布直方图估计该单位职工一天步行数的中位数;
(2)若该单位有职工200人,试估计职工一天行走步数不大于13000的人数;
(3)在(2)的条件下,该单位从行走步数大于15000的3组职工中用分层抽样的方法选取6人参加远足拉练活动,再从6人中选取2人担任领队,求这两人均来自区间(150,170]的概率.
【题目】已知函数f(x)=lnx.
(1)若a=4,求函数f(x)的单调区间;
(2)若函数f(x)在区间(0,1]内单调递增,求实数a的取值范围;
(3)若x1、x2∈R+,且x1≤x2,求证:(lnx1﹣lnx2)(x1+2x2)≤3(x1﹣x2).
【题目】已知函数f(x)=4alnx﹣3x,且不等式f(x+1)≥4ax﹣3ex,在(0,+∞)上恒成立,则实数a的取值范围( )
A.B.C.(﹣∞,0)D.(﹣∞,0]
【题目】如图,在Rt△ABC中,,,AC=4,D在AC上且AD:DC=3:1,当∠AED最大时,△AED的面积为( )
A.B.2C.3D.
【题目】如图,已知三棱柱,平面平面,,分别是的中点.
(1)证明:;
(2)求直线与平面所成角的余弦值.
【题目】已知函数, , .
(1)若,且存在单调递减区间,求实数的取值范围;
(2)设函数的图象与函数的图象交于点, ,过线段的中点作轴的垂线分别交, 于点, ,证明: 在点处的切线与在点处的切线不平行.
【题目】已知过原点的动直线l与圆相交于不同的两点A,B.
(1)求线段AB的中点M的轨迹C的方程;
(2)是否存在实数k,使得直线L:y=k(x﹣4)与曲线C只有一个交点?若存在,求出k的取值范围;若不存在,说明理由.