【题目】以下是某地区不同身高的未成年男性的体重平均值表.
身高/ | 60 | 70 | 80 | 90 | 100 | 110 |
体重/ | 6.13 | 7.9 | 9.99 | 12.15 | 15.02 | 17.5 |
身高/ | 120 | 130 | 140 | 150 | 160 | 170 |
体重/ | 20.92 | 26.86 | 31.11 | 38.85 | 42.25 | 55.05 |
(1)给出两个回归方程:
①,②.通过计算,得到它们的相关指数分别是:,.试问哪个回归方程拟合效果更好?
(2)若体重超过相同身高男性平均值的1.2倍为偏胖,低于0.8为偏瘦,那么该地区某中学一男生身高为,体重为,他的体重是否正常?
【题目】某商店每天(开始营业时)以每件15元的价格购入商品若干(商品在商店的保鲜时间为8小时,该商店的营业时间也恰好为8小时),并开始以每件30元的价格出售,若前6小时内所购进的商品没有售完,则商店对没卖出的商品将以每件10元的价格低价处理完毕(根据经验,2小时内完全能够把商品低价处理完毕,且处理完毕后,当天不再购进商品).该商店统计了100天商品在每天的前6小时内的销售量,由于某种原因销售量频数表中的部分数据被污损而不能看清,制成如下表格(注:视频率为概率).
前6小时内的销售量 (单位:件) | 3 | 4 | 5 |
频数 | 30 |
(1)若某天商店购进商品4件,试求商店该天销售商品获取利润的分布列和期望;
(2)若商店每天在购进4件商品时所获得的平均利润最大,求的取值集合.