题目内容
若直线与椭圆的交点在长轴上的射影恰好为椭圆的焦点,则椭圆的离心率为
A.
B.
C.
D.
若给定椭圆C:ax2+by2=1(a>0,b>0,ab)和点N(x0,y0),则称直线l:ax0x+by0y=1为椭圆C的“伴随直线”,
(1)若N(x0,y0)在椭圆C上,判断椭圆C与它的“伴随直线”的位置关系(当直线与椭圆的交点个数为0个、1个、2个时,分别称直线与椭圆相离、相切、相交),并说明理由;
(2)命题:“若点N(x0,y0)在椭圆C的外部,则直线l与椭圆C必相交.”写出这个命题的逆命题,判断此逆命题的真假,说明理由;
(3)若N(x0,y0)在椭圆C的内部,过N点任意作一条直线,交椭圆C于A、B,交l于M点(异于A、B),设,,问是否为定值?说明理由.
如图所示:已知过抛物线的焦点F的直线与抛物线相交于A,B两点。
(1)求证:以AF为直径的圆与x轴相切;
(2)设抛物线在A,B两点处的切线的交点为M,若点M的横坐标为2,求△ABM的外接圆方程;
(3)设过抛物线焦点F的直线与椭圆的交点为C、D,是否存在直线使得,若存在,求出直线的方程,若不存在,请说明理由。