题目内容
下表提供了某厂节能降耗技术改造后生产甲产品过程中记录的产量x(吨)与相应的生产耗y(吨标准煤)的几对照数据
|
分析:先计算平均数,利用线性回归方程恒过样本中心点,即可得到结论.
解答:解:由数据可知:
=
=4.5,
=
=
代入
=0.7x+0.35,可得
=0.7×4.5+0.35,解得a=3.
故选A.
. |
x |
3+4+5+6 |
4 |
. |
y |
2.5+a+4+4.5 |
4 |
a+11 |
4 |
代入
y |
a+11 |
4 |
故选A.
点评:本题查考学生线性回归方程的知识、需要知道根据数据求出
,
,而点(
,
)满足回归方程.
. |
x |
. |
y |
. |
x |
. |
y |
练习册系列答案
相关题目
下表提供了某厂节能降耗技术改造后生产甲产品过程中记录的产量x(吨)与相应的生产能耗Y(吨标准煤)的5组对照数据
(1)请在给出的坐标系内画出上表数据的散点图;
(2)请根据上表提供的数据,求Y关于x的回归直线方程;
(3)已知该厂技改前100吨甲产品的生产能耗为92吨标准煤.试根据(2)求出的回归方程,预测生产100吨甲产品的生产能耗比技改前降低多少吨标准煤?(参考数据:3×2.5+4×3+5×4+6×4.5+7×5=101.5)
x | 3 | 4 | 5 | 6 | 7 |
Y | 2.5 | 3 | 4 | 4.5 | 5 |
(2)请根据上表提供的数据,求Y关于x的回归直线方程;
(3)已知该厂技改前100吨甲产品的生产能耗为92吨标准煤.试根据(2)求出的回归方程,预测生产100吨甲产品的生产能耗比技改前降低多少吨标准煤?(参考数据:3×2.5+4×3+5×4+6×4.5+7×5=101.5)
下列命题: ①设函数f(x)=g(x)+x2,曲线y=g(x)在点(1,g(1))处的切线方程为y=2x+1,则曲线y=f(x)在点(1,f(1))处切线的斜率为-
②关于x的不等式(a-3)x2<(4a-2)x对任意的a∈(0,1)恒成立,则x的取值范围是(-∞,-1]∪[
③变量X与Y相对应的一组数据为(10,1),(11.3,2),(11.8,3),(12.5,4),(13,5);变量U与V相对应的一组数据为(10,5),(11.3,4),(11.8,3),(12.5,2),(13,1),r1表示变量Y与X之间的线性相关系数,r2表示变量V与U之间的线性相关系数,则r2<0<r1; ④下表提供了某厂节能降耗技术改造后生产甲产品过程中记录的产量x(吨)与相应的生产能耗y(吨标准煤)的几组对照数据
以上命题正确的个数是( ) |