题目内容
已知Rt△ABC的顶点坐标A(-3,0),直角顶点B(-1,-),顶点C在轴
上。
(1)求BC边所在直线的方程;
(2)圆M为Rt△ABC外接圆,其中M为圆心,求圆M的方程;
(3)直线与Rt△ABC外接圆相切于第一象限,求切线与两坐标轴所围成的三角形面
积最小时的切线方程。
上。
(1)求BC边所在直线的方程;
(2)圆M为Rt△ABC外接圆,其中M为圆心,求圆M的方程;
(3)直线与Rt△ABC外接圆相切于第一象限,求切线与两坐标轴所围成的三角形面
积最小时的切线方程。
(1)因为AB所在的直线的斜率,所以BC所在的直线的斜
率为,根据直线方程的点斜式,
BC所在的直线的方程为,即。
(2)由(1)可知,C点坐标为(3,0),又因为△ABC为以∠B为直角的直角三角形,
所以AC的中点即坐标原点是其外接圆圆心,所以外接圆方程为
;
(3)根据题意,设直线的方程为,因为与圆相切,所以
所以,即,当且仅当时取等。
而,当且仅当时取等。
所以,三角形面积最小时切线方程是。
率为,根据直线方程的点斜式,
BC所在的直线的方程为,即。
(2)由(1)可知,C点坐标为(3,0),又因为△ABC为以∠B为直角的直角三角形,
所以AC的中点即坐标原点是其外接圆圆心,所以外接圆方程为
;
(3)根据题意,设直线的方程为,因为与圆相切,所以
所以,即,当且仅当时取等。
而,当且仅当时取等。
所以,三角形面积最小时切线方程是。
略
练习册系列答案
相关题目