ÌâÄ¿ÄÚÈÝ
19£®Ä³Æû³µ³§ÓÐÒ»Ìõ¼ÛֵΪaÍòÔªµÄÆû³µÉú²úÏߣ¬ÏÖҪͨ¹ý¼¼Êõ¸ÄÔìÀ´Ìá¸ß¸ÃÉú²úÏßµÄÉú²úÄÜÁ¦£¬Ìá¸ß²úÆ·µÄÔö¼ÓÖµ£®¾¹ýÊг¡µ÷²é£¬²úÆ·µÄÔö¼ÓÖµyÍòÔªÓë¼¼Êõ¸ÄÔìͶÈëµÄxÍòÔªÖ®¼äÂú×㣺¢ÙyÓ루a-x£©ºÍx2µÄ³Ë»ý³ÉÕý±È£»¢Úx¡Ê£¨0£¬$\frac{4a}{5}$]£®Èôx=$\frac{a}{2}$ʱ£¬y=a3£®£¨¢ñ£©Çó²úÆ·Ôö¼ÓÖµy¹ØÓÚxµÄ±í´ïʽ£»
£¨¢ò£©Çó²úÆ·Ôö¼ÓÖµyµÄ×î´óÖµ¼°ÏàÓ¦µÄxµÄÖµ£®
·ÖÎö £¨¢ñ£©¸ù¾ÝÌõ¼þÉèy=f£¨x£©=k£¨a-x£©x2£¬ÀûÓôý¶¨ÏµÊý·¨¼´¿ÉÇó²úÆ·Ôö¼ÓÖµy¹ØÓÚxµÄ±í´ïʽ£»
£¨¢ò£©Çóº¯ÊýµÄµ¼Êý£¬¸ù¾Ýµ¼Êý¼´¿ÉÇó²úÆ·Ôö¼ÓÖµyµÄ×î´óÖµ¼°ÏàÓ¦µÄxµÄÖµ£®
½â´ð ½â£º£¨I£©Éèy=f£¨x£©=k£¨a-x£©x2£¬
ÒòΪµ±x=$\frac{a}{2}$ʱ£¬y=a3£¬ËùÒÔk=8£¬
ËùÒÔf£¨x£©=8£¨a-x£©x2£¬x¡Ê£¨0£¬$\frac{4a}{5}$]£®
£¨II£©ÒòΪf¡ä£¨x£©=-24x2+16ax£¬Áîf¡ä£¨x£©=0£¬Ôòx=0£¨Éᣩ£¬x=$\frac{2a}{3}$£®
µ±x¡Ê£¨0£¬$\frac{2a}{3}$£©Ê±£¬f¡ä£¨x£©£¾0£¬ËùÒÔf£¨x£©ÔÚ£¨0£¬$\frac{2a}{3}$£©ÉÏÊÇÔöº¯Êý£¬
µ±x¡Ê£¨$\frac{2a}{3}$£¬$\frac{4a}{5}$£©Ê±£¬f¡ä£¨x£©£¼0£¬ËùÒÔf£¨x£©ÔÚ£¨$\frac{2a}{3}$£¬$\frac{4a}{5}$£©ÉÏÊǼõº¯Êý£¬
ËùÒÔ£¬µ±x=$\frac{2a}{3}$ʱ£¬ymax=f£¨$\frac{2a}{3}$£©=$\frac{32}{27}$a3£»
´ð£º£¨I£©f£¨x£©=8£¨a-x£©x2£¬x¡Ê£¨0£¬$\frac{4a}{5}$]£»£¨II£©Í¶Èë$\frac{2a}{3}$ÍòÔª£¬×î´óÔö¼ÓÖµ$\frac{32}{27}$a3£®
½â·¨¶þ£ºÒòΪ$x¡Ê£¨{0£¬\frac{4}{5}a}]$£¬ËùÒÔa-x£¾0£¬
ËùÒÔ$f£¨x£©=8£¨{a-x}£©{x^2}=4£¨{2a-2x}£©•x•x¡Ü4¡Á{£¨{\frac{2a-2x+x+x}{3}}£©^3}=\frac{32}{27}{a^3}$
µÈºÅµ±ÇÒ½öµ±2a-2x=x=x¼´x=$\frac{2a}{3}$ʱµÈºÅ³ÉÁ¢£¬
ÒòΪ$\frac{2a}{3}$¡Ê£¨0£¬$\frac{4a}{5}$]£¬ËùÒÔµ±x=$\frac{2a}{3}$ʱ£¬ymax=f£¨$\frac{2a}{3}$£©=$\frac{32}{27}$a3
´ð£º£¨I£©f£¨x£©=8£¨a-x£©x2£¬x¡Ê£¨0£¬$\frac{4a}{5}$]£»£¨II£©Í¶Èë$\frac{2a}{3}$ÍòÔª£¬×î´óÔö¼ÓÖµ$\frac{32}{27}$a3£®
µãÆÀ ±¾ÌâÖ÷Òª¿¼²éÉú»îÖеÄÓÅ»¯ÎÊÌ⣬ÀûÓôý¶¨ÏµÊý·¨Çó³öº¯ÊýµÄ½âÎöʽ£¬ÀûÓõ¼ÊýÇóº¯ÊýµÄ×îÖµÊǽâ¾ö±¾ÌâµÄ¹Ø¼ü£®
A£® | 12 | B£® | 8 | C£® | 6 | D£® | 4 |
A£® | $\frac{2}{7}$£¨8n-1£© | B£® | $\frac{2}{7}$£¨8n+1£© | C£® | $\frac{2}{7}$£¨8n+1-1£© | D£® | $\frac{2}{7}$£¨8n+1+1£© |
A£® | y=tanx | B£® | y=2x | C£® | y=x3 | D£® | y=lg£¨1+x2£© |