题目内容

如图,设F是椭圆:C:
x2
a2
+
y2
b2
=1
(a>b>0)的左焦点,直线l为其左准线,直线l与x轴交于点P,线段MN为椭圆的长轴,已知|MN|=8,且|PM|=2|MF|.
(1)求椭圆C的标准方程;
(2)若过点P的直线与椭圆相交于不同两点A,B,求证:∠AFM=∠BFN;
(3)(理)求三角形ABF面积的最大值.
(1)∵线段MN为椭圆的长轴,且|MN|=8,∴a=4
∵|PM|=2|MF|,
a2
c
-a=2(a-c)
∴a2-ac=2ac-2c2
∴2e2-3e+1=0,
解得e=
1
2
或e=1(舍去)
∴c=2,b2=a2-c2=12,
∴椭圆的标准方程为
x2
16
+
y2
12
=1.
(2)当AB的斜率为0时,显然∠AFM=∠BFM=0,满足题意.
当AB方程为x=my-8,代入椭圆方程整理得
(3m2+4)y2-48my+144=0,
设A(x1,y1),B(x2,y2),
y1+y2=
48m
3m2+4
y1y2=
144
3m2+4

∴KAF+KBF=
y1
x1+2
+
y2
x2+2
=
y1
m1-6
+
y2
my2-6

=
2my1y2-6(y1+y2)
(my1-6)(m
y 2
-6)

=
288m
3m2+4
-
288m
3m2+4
(my1-6)(my2-6)
=0
∴KAF+KBF=0,从而∠AFM=∠BFN  综上可知,恒有∠AFM=∠BFN.
(3)(理)∵P(-8,0),F(-2,0),∴|PF|=6,
∴|y2-y1|=
(y1+y2)2-4y1y2

=
(
48m
3m2+4
)2 -4•
144
3m2+4

=
24
m 2-4
3m2+4

∴S△ABF=S△PBF-S△PAF
=
1
2
|PF|•|y2|
-
1
2
|PF|•|y1|

=
1
2
|PF|•|y2-y1
|
=
72
m2-4
3m2+4
=
72
m2-4
3(m2-4)+16

=
72
3
m2-4
+
16
m2-4

72
2
3•16
=3
3

当且仅当3
m2-4
=
16
m2-4

即m2=
28
3
(此时适合△>0的条件)时取等号
∴三角形ABF面积的最大值是3
3
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网