题目内容

设M=2t+it-1×2t-1+…+i1×2+i0,其中ik=0或1(k=0,1,2,…,t-1,t∈N+),并记M=(1it-1it-2…i1i02,对于给定的x1=(1it-1it-2…i1i02,构造数列{xn}如下:x2=(1i0it-1it-2…i2i12x3=(1i1i0it-1it-2…i3i22,x4=(1i2i1i0it-1it-2…i4i32…,若x1=27,则x4=________(用数字作答).

23
分析:由M=2t+it-1×2t-1+…+i1×2+i0,且ik=0或1,M=(1it-1it-2…i1i02,x1=(1it-1it-2…i1i02,得x1的表达式;由x1=27<32,得t=4;从而得i0,i1,i2,i3;即得x4的值.
解答:由题意,x1=(1it-1it-2…i1i02=2t+it-1×2t-1+…+i1×2+i0=27,知t=4;
∴x1=24+1×23+0×22+1×2+1,这里i0=1,i1=1,i2=0,i3=1;
∴x4=(1i2i1i0it-1it-2…i4i32=2t+i2×2t-1+i1×2t-2+it-1×2t-3+…+i4×2+i3=24+0×23+1×22+1×2+1=23;
故答案为:23.
点评:本题用二进制的知识,考查了数列的综合运用;解题时,关键是弄清题意,结合所学的知识,细心作答.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网