题目内容

(本题满分15分)

已知函数,设, .

(Ⅰ)试确定的取值范围,使得函数上为单调函数;

(Ⅱ)试判断的大小并说明理由;

(Ⅲ)求证:对于任意的,总存在,满足,并确定这样的的个数.

(本题满分15分)

已知函数,设, .

(Ⅰ)试确定的取值范围,使得函数上为单调函数;

(Ⅱ)试判断的大小并说明理由;

(Ⅲ)求证:对于任意的,总存在,满足,并确定这样的的个数.

解:(Ⅰ)因为

;由,

所以 上递增,在上递减

要使上为单调函数,则       -------------4分

(Ⅱ)因为上递增,在上递减,

处有极小值, 又

上的最小值为

     从而当时,,即         -------------8分

(Ⅲ)证:∵,又∵

,   令,从而问题转化为证明方程=0在上有解,并讨论解的个数-------------9分

   ∵,

,      ---------------- 10分

时,,

所以上有解,且只有一解      ---------------- 11分

②当时,,但由于,

所以上有解,且有两解        ------------------- 12分

③当时,,故上有且只有一解;

时,,

所以上也有且只有一解               ------------------- 13分

综上所述, 对于任意的,总存在,满足,

且当时,有唯一的适合题意;

时,有两个适合题意.                           --------------14分

(说明:第(3)题也可以令,,然后分情况证明在其值域内,并讨论直线与函数的图象的交点个数即可得到相应的的个数)

练习册系列答案
相关题目

((本题满分15分)
某有奖销售将商品的售价提高120元后允许顾客有3次抽奖的机会,每次抽奖的方法是在已经设置并打开了程序的电脑上按“Enter”键,电脑将随机产生一个                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        1~6的整数数作为号码,若该号码是3的倍数则顾客获奖,每次中奖的奖金为100元,运用所学的知识说明这样的活动对商家是否有利。

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网