题目内容

设an=1+q+q2+…+qn1,An=Ca1+Ca2+…+Can.
(1)用q和n表示An
(2)又设b1+b2+…+bn=.求证:数列是等比数列.
(1)∵q≠1,∴an=.
∴An=C+C+…+C
=[(C+C+…+C)-(Cq+Cq2+…+Cqn)]
=[2n-(1+q)n].
(2)证明:∵b1+b2+…+bn
==,
∴b1+b2+…+bn1
两式相减得:bnn1
∴=≠0,
∴是等比数列.  
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网