题目内容

在数列{an}中,如果存在正整数T,使得an+T=an对于任意正整数n均成立,那么就称数列{an}为周期数列,其中T叫做数列{an}的周期.已知数列{xn}满足xn+2=|xn+1-xn|(x∈N*),若x1=1,x2=a(a≤1,a≠0),当数列{xn}的周期为3时,则数列{xn}的前2014项的和S2014为(  )
分析:利用x1=1,x2=a(a≤1,a≠0),xn+2=|xn+1-xn|(n∈N*).可得x3=|x2-x1|=1-a.x4=|x3-x2|=|1-2a|,再利用周期为3可得x4=x1,a≠0,于是2a-1=1,解得a,可得x1+x2+x3=1+a+1-a=2.再利用周期性可求数列{xn}的前2014项的和S2014
解答:解:∵x1=1,x2=a(a≤1,a≠0),xn+2=|xn+1-xn|,
∴x3=|a-1|,又数列{xn}的周期为3,
∴x4=|x3-x2|=||a-1|-a|=x1=1,
解得:a=1或a=0,
∵a≠0,∴a=1,
∴x1=1,x2=1,x3=0;
即x1+x2+x3=2;
同理可得,x4=1,x5=1,x6=0,
x4+x5+x6=2;

x2011+x2012+x2013=2;
又x2014=x1=1,2014=671×3+1,
∴S2014=x1+x2+x3+…+x2014
=671×(1+1+0)+1
=1343.
故选D.
点评:本题考查数列的求和,着重考查函数的周期性,得到相邻三项之和为2是关键,属于中档题.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网