题目内容
(2013•成都一模)在数列{an}中,a1=2,a2=4,且当n≥2时,a
=an-1an+1,n∈N*.
(I)求数列{an}的通项公式an;
(II)若bn=(2n-1)an,求数列{bn}的前n项和Sn;
(III)求证:
+
+
+…+
<
.
2 n |
(I)求数列{an}的通项公式an;
(II)若bn=(2n-1)an,求数列{bn}的前n项和Sn;
(III)求证:
1 |
a1 |
1 |
2a2 |
1 |
3a3 |
1 |
nan |
3 |
4 |
分析:(Ⅰ)由给出的数列的递推式a
=an-1an+1,n∈N*,可以断定数列是等比数列,再由a1=2,a2=4求出等比数列的公比,则通项公式可求;
(Ⅱ)把(Ⅰ)中求得的an代入bn=(2n-1)an,利用错位相减法可求数列{bn}的前n项和Sn;
(Ⅲ)把an=2n代入
,然后进行放大,化为
<
=
-
代入要证的不等式左边,正负相消后可证出结论.
2 n |
(Ⅱ)把(Ⅰ)中求得的an代入bn=(2n-1)an,利用错位相减法可求数列{bn}的前n项和Sn;
(Ⅲ)把an=2n代入
1 |
nan |
1 |
n•2n |
n+1 |
n(n-1)2n |
1 |
(n-1)2n-1 |
1 |
n•2n |
解答:(Ⅰ)解:在数列{an}中,∵当n≥2时,a
=an-1an+1,∴数列{an}为等比数列,
又∵a1=2,a2=4,∴公比q=
=
=2.
∴数列{an}的通项公式为an=a1qn-1=2×2n-1=2n;
(Ⅱ)解:由bn=(2n-1)an,an=2n,得bn=(2n-1)•2n.
∴Sn=b1+b2+b3+…+bn
=1×2+3×22+5×23+…+(2n-1)•2n ①.
2Sn=1×22+3×23+5×24+…+(2n-3)•2n+(2n-1)•2n+1 ②.
①-②得:-Sn=1×2+2(22+23+…+2n)-(2n-1)•2n+1
=2+2×
-(2n-1)•2n+1
=2-8(1-2n-1)-(2n-1)•2n+1
=-6+2n+2-n•2n+2+2n+1.
∴Sn=(2n-3)•2n+1+6;
(Ⅲ)证明:∵
=
<
=
-
(n≥2),
∴
+
+
+…+
<
+
+(
-
)+(
-
)+…+(
-
)
=
+
+
-
<
+
=
.
2 n |
又∵a1=2,a2=4,∴公比q=
a2 |
a1 |
4 |
2 |
∴数列{an}的通项公式为an=a1qn-1=2×2n-1=2n;
(Ⅱ)解:由bn=(2n-1)an,an=2n,得bn=(2n-1)•2n.
∴Sn=b1+b2+b3+…+bn
=1×2+3×22+5×23+…+(2n-1)•2n ①.
2Sn=1×22+3×23+5×24+…+(2n-3)•2n+(2n-1)•2n+1 ②.
①-②得:-Sn=1×2+2(22+23+…+2n)-(2n-1)•2n+1
=2+2×
4(1-2n-1) |
1-2 |
=2-8(1-2n-1)-(2n-1)•2n+1
=-6+2n+2-n•2n+2+2n+1.
∴Sn=(2n-3)•2n+1+6;
(Ⅲ)证明:∵
1 |
nan |
1 |
n•2n |
n+1 |
n(n-1)2n |
1 |
(n-1)2n-1 |
1 |
n•2n |
∴
1 |
a1 |
1 |
2a2 |
1 |
3a3 |
1 |
nan |
<
1 |
1×2 |
1 |
2×4 |
1 |
2×22 |
1 |
3×23 |
1 |
3×23 |
1 |
4×24 |
1 |
(n-1)2n-1 |
1 |
n•2n |
=
1 |
2 |
1 |
8 |
1 |
8 |
1 |
n•2n |
1 |
2 |
1 |
4 |
3 |
4 |
点评:本题考查了利用数列的递推式确定等比关系,考查了错位相减法求数列的先n项和,训练了放缩法证明不等式,利用放缩法证不等式是学生学习中的难点.此题属难题.
练习册系列答案
相关题目