ÌâÄ¿ÄÚÈÝ

ÒÑÖªÏòÁ¿
m
=(1£¬1)
£¬ÏòÁ¿
n
ÓëÏòÁ¿
m
¼Ð½ÇΪ
3
4
¦Ð
£¬ÇÒ
m
n
=-1
£®
£¨1£©ÈôÏòÁ¿
n
ÓëÏòÁ¿
q
=£¨1£¬0£©µÄ¼Ð½ÇΪ
¦Ð
2
£¬ÏòÁ¿
p
=(cosA£¬2cos2
C
2
)
£¬ÆäÖÐA£¬CΪ¡÷ABCµÄÄڽǣ¬ÇÒA£¬B£¬CÒÀ´Î³ÉµÈ²îÊýÁУ¬ÊÔÇó|
n
+
p
|µÄÈ¡Öµ·¶Î§£®
£¨2£©ÈôA¡¢B¡¢CΪ¡÷ABCµÄÄڽǣ¬ÇÒA£¬B£¬CÒÀ´Î³ÉµÈ²îÊýÁУ¬A¡ÜB¡ÜC£¬Éèf£¨A£©=sin2A-2£¨sinA+cosA£©+a2£¬f£¨A£©µÄ×î´óֵΪ5-2
2
£¬¹ØÓÚxµÄ·½³Ìsin(ax+
¦Ð
3
)=
m
2
(a£¾0)
ÔÚ[0£¬
¦Ð
2
]
ÉÏÓÐÏàÒìʵ¸ù£¬ÇómµÄÈ¡Öµ·¶Î§£®
£¨1£©Áî
n
=£¨x£¬y£©£¬ÔòÓÐcos
3
4
¦Ð
=
m
n
|m
|•|
n|
=-
2
2

ÓÉ
m
n
=-1
µÃ|
m
|•|
n
|=
2
£¬ÓÖÏòÁ¿
m
=(1£¬1)
£¬¹ÊÆäģΪ
2
£¬
ÔòÏòÁ¿
n
ÈËģΪ1£®ÔòÓÐx2+y2=1
£¨1£©ÏòÁ¿
n
ÓëÏòÁ¿
q
=£¨1£¬0£©µÄ¼Ð½ÇΪ
¦Ð
2
£¬¹ÊÓÐ
n
q
=0£¬¼´x=0£¬¹Êy=¡À1
ÓÖ
m
n
=-1
¹Êy=-1£¬Ôò
n
=£¨0£¬-1£©£¬
 ÏòÁ¿
p
=(cosA£¬2cos2
C
2
)
£¬¼´
p
=(cosA£¬1+cosC)

ÓÖA£¬CΪ¡÷ABCµÄÄڽǣ¬ÇÒA£¬B£¬CÒÀ´Î³ÉµÈ²îÊýÁР¹ÊB=
¦Ð
3

|
n
+
p
|2=cos2A+cos2C=cos2A+cos2£¨
2¦Ð
3
-A£©=1+
1
2
cos£¨2A+
¦Ð
3
£©
ÓÉA¡Ê£¨0£¬
2¦Ð
3
£©£¬µÃ2A+
¦Ð
3
¡Ê£¨
¦Ð
3
£¬
5¦Ð
3
£©µÃcos£¨2A+
¦Ð
3
£©¡Ê[-1£¬
1
2
£©
|
n
+
p
|2¡Ê[
1
2
£¬
5
4
£©¹Ê|
n
+
p
|¡Ê[
2
2
£¬
5
2
£©
£¨2¡ßA¡¢B¡¢CΪ¡÷ABCµÄÄڽǣ¬ÇÒA£¬B£¬CÒÀ´Î³ÉµÈ²îÊýÁУ¬A¡ÜB¡ÜC£¬¡àB=
¦Ð
3

¡àf£¨A£©=sin2A-2£¨sinA+cosA£©+a2=2sinAcosA-2£¨sinA+cosA£©+a2 
Áît=sinA+cosA=
2
sin£¨A+
¦Ð
4
£©£¬Ôò2sinAcosA=t2-1
ÓÉÓÚA¡Ê£¨0£¬
¦Ð
3
]£¬A+
¦Ð
4
¡Ê£¨
¦Ð
4
£¬
7¦Ð
12
]£¬¹Êt=
2
sin£¨A+
¦Ð
4
£©¡Ê£¨1£¬
2
]
¹ÊÓÐf£¨A£©=t2-1-2t+a2=t2-2t+a2-1£¬t¡Ê£¨1£¬
2
]
µ±t=
2
ʱȡµ½×î´óֵΪ1-2
2
+a2
ÓÖf£¨A£©µÄ×î´óֵΪ5-2
2
£¬¹Ê1-2
2
+a2=5-2
2

¹Êa2=4£¬ÓÖa£¾0£¬¹Êa=2
ÓÖ¹ØÓڵķ½³Ìsin(ax+
¦Ð
3
)=
m
2
(a£¾0)
ÔÚ[0£¬
¦Ð
2
]
ÉÏÓÐÏàÒìʵ¸ù
¼´·½³Ìsin(2x+
¦Ð
3
)=
m
2
ÔÚ[0£¬
¦Ð
2
]
ÉÏÓÐÏàÒìʵ¸ù
ÒòΪx¡Ê[0£¬
¦Ð
2
]
£¬¹Êy=sin(2x+
¦Ð
3
)
ÔÚ£¨0£¬
¦Ð
12
£©ÉÏÊÇÔöº¯Êý£¬ÔÚ£¨
¦Ð
12
£¬
¦Ð
2
£©ÉÏÊǼõº¯Êý
·½³Ìsin(2x+
¦Ð
3
)=
m
2
ÔÚ[0£¬
¦Ð
2
]
ÉÏÓÐÏàÒìʵ¸ù
¹Ê
m
2
¡Ê[
3
2
£¬1£©£¬
¹Êm¡Ê[
3
£¬2£©£®
Á·Ï°²áϵÁдð°¸
Ïà¹ØÌâÄ¿

Î¥·¨ºÍ²»Á¼ÐÅÏ¢¾Ù±¨µç»°£º027-86699610 ¾Ù±¨ÓÊÏ䣺58377363@163.com

¾«Ó¢¼Ò½ÌÍø