ÌâÄ¿ÄÚÈÝ
ÒÑÖªÔ²CÓëÁ½Ô²x2+(y+4)2=1,x2+(y-2)2=1ÍâÇÐ,Ô²CµÄÔ²ÐĹ켣·½³ÌΪL,ÉèLÉϵĵãÓëµãM(x,y)µÄ¾àÀëµÄ×îСֵΪm,µãF(0,1)ÓëµãM(x,y)µÄ¾àÀëΪn.
(1)ÇóÔ²CµÄÔ²ÐĹ켣LµÄ·½³Ì.
(2)ÇóÂú×ãÌõ¼þm=nµÄµãMµÄ¹ì¼£QµÄ·½³Ì.
(3)ÔÚ(2)µÄÌõ¼þÏÂ,ÊÔ̽¾¿¹ì¼£QÉÏÊÇ·ñ´æÔÚµãB(x1,y1),ʹµÃ¹ýµãBµÄÇÐÏßÓëÁ½×ø±êÖáΧ³ÉµÄÈý½ÇÐεÄÃæ»ýµÈÓÚ.Èô´æÔÚ,ÇëÇó³öµãBµÄ×ø±ê;Èô²»´æÔÚ,Çë˵Ã÷ÀíÓÉ.
(1) y=-1 (2) x2=4y (3) ´æÔÚ µãBµÄ×ø±êΪ(2,1)»ò(-2,1)£¬ÀíÓɼû½âÎö
¡¾½âÎö¡¿(1)Á½Ô²µÄ°ë¾¶¶¼Îª1,Á½Ô²µÄÔ²ÐÄ·Ö±ðΪC1(0,-4),C2(0,2),
ÓÉÌâÒâµÃ|CC1|=|CC2|,¿ÉÖªÔ²ÐÄCµÄ¹ì¼£ÊÇÏ߶ÎC1C2µÄ´¹Ö±Æ½·ÖÏß,C1C2µÄÖеãΪ(0,-1),Ö±ÏßC1C2µÄбÂʲ»´æÔÚ,¹ÊÔ²ÐÄCµÄ¹ì¼£ÊÇÏ߶ÎC1C2µÄ´¹Ö±Æ½·ÖÏß,Æä·½³ÌΪy=-1,¼´Ô²CµÄÔ²ÐĹ켣LµÄ·½³ÌΪy=-1.
(2)ÒòΪm=n,ËùÒÔM(x,y)µ½Ö±Ïßy=-1µÄ¾àÀëÓëµ½µãF(0,1)µÄ¾àÀëÏàµÈ,¹ÊµãMµÄ¹ì¼£QÊÇÒÔy=-1Ϊ׼Ïß,ÒÔµãF(0,1)Ϊ½¹µã,¶¥µãÔÚÔµãµÄÅ×ÎïÏß,=1,¼´p=2,ËùÒÔ,¹ì¼£QµÄ·½³ÌÊÇx2=4y.
(3)¼ÙÉè´æÔÚµãBÂú×ãÌõ¼þ.ÓÉ(2)µÃy=x2,y'=x,ËùÒÔ¹ýµãBµÄÇÐÏßµÄбÂÊΪk=x1,
ÇÐÏß·½³ÌΪy-y1=x1(x-x1).
Áîx=0µÃy=-+y1,
Áîy=0µÃx=-+x1.
ÒòΪµãBÔÚx2=4yÉÏ,ËùÒÔy1=,
¹Êy=-,x=x1,
ËùÒÔÇÐÏßÓëÁ½×ø±êÖáΧ³ÉµÄÈý½ÇÐεÄÃæ»ýΪ
S=|x||y|=|x1||-|=||,
ËùÒÔ||=,½âµÃ|x1|=2,
ËùÒÔx1=¡À2.
µ±x1=2ʱ,y1=1,µ±x1=-2ʱ,y1=1,ËùÒÔµãBµÄ×ø±êΪ(2,1)»ò(-2,1).