题目内容

已知函数(k为常数,e=2.71828……是自然对数的底数),曲线在点处的切线与x轴平行。

(1)求k的值;

(2)求的单调区间;

(3)设,其中的导函数,证明:对任意

 

【答案】

(1);(2)单调递增区间为,单调递减区间为;(3)详见解析.

【解析】

试题分析:(1)先求导函数,由导数的几何意义得,列方程求;(2)求的解集和定义域求交集,得单调递增区间;求的解集并和定义域求交集,得单调递减区间,该题,可观察当时,时,.所以单调区间可求;(3)思路一:考虑的最大值,证明最大值小于即可,但是考虑到解析式的复杂性,可对不等式等价变形;思路二:原不等式等价于

,记,利用导数可求其最大值为,从图象可以判断的图象在直线的上方,也就是说恒成立,故,所以命题得证.

试题解析:(Ⅰ)由由于曲线处的切线与x轴平行,所以,因此

(Ⅱ)由(Ⅰ)得,令时,;当时,,所以时,时,.  因此的单调递增区间为(0,1),单调递减区间

(Ⅲ)证明因为,所以因此对任意等价于  由(Ⅱ)知

所以因此当时,单调递增;当单调递增. 所以的最大值为  故 设因为,所以时,单调递增,

时,所以因此对任意

考点:1、导数的几何意义;2、导数 在单调性上的应用;3、利用导数求函数的最值.

 

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网