题目内容
已知函数的最小正周期为.
(I)求值及的单调递增区间;
(II)在△中,分别是三个内角所对边,若,,,求的大小.
【答案】
(I);的单调递增区间为;(II)或.
【解析】
试题分析:(I)由已知首先利用降幂扩角和倍角公式:,将函数化为一个角的三角函数,利用公式求值,利用整体思想求的单调递增区间;(II)由(I)及已知,得,由此可以求得角.再利用正弦定理,得,结合已知条件,可求得角的大小.
试题解析:(I),最小正周期为,.单调递增区间为.
(II)由正弦定理,
或.
考点:1.三角恒等变换(倍角公式);2.三角函数的周期和单调性;3.正弦定理.
练习册系列答案
相关题目