题目内容
已知抛物线y2=2px(p>0),过其焦点且斜率为1的直线交抛物线与A、B两点,若线段AB的中点的纵坐标为2,则该抛物线的准线方程为
- A.x=1
- B.x=-1
- C.x=2
- D.x=-2
B
分析:先假设A,B的坐标,根据A,B满足抛物线方程将其代入得到两个关系式,再将两个关系式相减根据直线的斜率和线段AB的中点的纵坐标的值可求出p的值,进而得到准线方程.
解答:设A(x1,y1)、B(x2,y2),则有y12=2px1,y22=2px2,
两式想减得:(y1-y2)(y1+y2)=2p(x1-x2),
又因为直线的斜率为1,所以
=1,
所以有y1+y2=2p,又线段AB的中点的纵坐标为2,
即y1+y2=4,所以p=2,所以抛物线的准线方程为x=-
=-1.
故选B.
点评:本题考查抛物线的几何性质、直线与抛物线的位置关系等基础知识.
分析:先假设A,B的坐标,根据A,B满足抛物线方程将其代入得到两个关系式,再将两个关系式相减根据直线的斜率和线段AB的中点的纵坐标的值可求出p的值,进而得到准线方程.
解答:设A(x1,y1)、B(x2,y2),则有y12=2px1,y22=2px2,
两式想减得:(y1-y2)(y1+y2)=2p(x1-x2),
又因为直线的斜率为1,所以
所以有y1+y2=2p,又线段AB的中点的纵坐标为2,
即y1+y2=4,所以p=2,所以抛物线的准线方程为x=-
故选B.
点评:本题考查抛物线的几何性质、直线与抛物线的位置关系等基础知识.
练习册系列答案
相关题目