题目内容
【题目】孙子定理是中国古代求解一次同余式组的方法,是数论中一个重要定理,最早可见于中国南北朝时期的数学著作《孙子算经》,年英国来华传教士伟烈亚力将其问题的解法传至欧洲,年英国数学家马西森指出此法符合年由高斯得出的关于同余式解法的一般性定理,因而西方称之为“中国剩余定理”.这个定理讲的是一个关于整除的问题,现有这样一个整除问题:将至这个整数中能被除余且被除余的数按由小到大的顺序排成一列构成一数列,则此数列的项数是( )
A.B.C.D.
【答案】D
【解析】
列举出该数列的前几项,可知该数列为等差数列,求出等差数列的首项和公差,进而可得出数列的通项公式,然后求解满足不等式的正整数的个数,即可得解.
设所求数列为,该数列为、、、、,
所以,数列为等差数列,且首项为,公差为,
所以,,
解不等式,即,解得,
则满足的正整数的个数为,
因此,该数列共有项.
故选:D.
【题目】某家政公司对部分员工的服务进行民意调查,调查按各项服务标准进行量化评分,婴幼儿保姆部对40~50岁和20~30岁各20名女保姆的调查结果如下:
分数 年龄 | |||||
40~50岁 | 0 | 2 | 4 | 7 | 7 |
20~30岁 | 3 | 5 | 5 | 5 | 2 |
(1)若规定评分不低于80分为优秀保姆,试分别估计这两个年龄段保姆的优秀率;
(2)按照大于或等于80分为优秀保姆,80分以下为非优秀保姆统计.作出列联表,并判断能否有的把握认为对保姆工作质量的评价是否优秀与年龄有关.
(3)从所有成绩在70分以上的人中按年龄利用分层抽样抽取10名保姆,再从这10人中选取3人给大家作经验报告,设抽到40~50岁的保姆的人数为,求出的分布列与期望值.
下面的临界值表供参考:
0.15 | 0.10 | 0.05 | 0.025 | 0.010 | 0.005 | 0.001 | |
2.072 | 2.706 | 3.841 | 5.024 | 6.635 | 7.879 | 10.828 |
参考公式:,其中.