题目内容

已知x,y∈R,且
x≥1
x-y+1≥0
2x-y-2≤0
3x+2y
x
的最大值是(  )
分析:本题考查的知识点是线性规划,处理的思路为:根据已知的约束条件,画出满足约束条件的可行域,再
3x+2y
x
=3+2×
y
x
,分析
y
x
表示的几何意义,结合图象即可给出
y
x
的最大值.
解答:解::先根据实数x,y满足的条件画出可行域,
由于
3x+2y
x
=3+2×
y
x

y
x
的几何意义是可行域内任意一点P与坐标原点连线的斜率
观察图形可知,当点P在点(1,2)处
y
x
取最大值
最大值为2,则
3x+2y
x
的最大值是3+4=7
故选D.
点评:平面区域的最值问题是线性规划问题中一类重要题型,在解题时,关键是正确地画出平面区域,分析表达式的几何意义,然后结合数形结合的思想,分析图形,找出满足条件的点的坐标,即可求出答案.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网