题目内容

设f(x)=3-x-ln
2x+1
,实数a,b,c满足f(a)f(b)f(c)<0,且0<a<b<c,若x0是函数的一个零点,下列不等式中不可能成立的 为(  )
分析:确定函数为减函数,进而可得f(a)、f(b)、f(c)中一项为负的、两项为正的;或者三项都是负的,分类讨论分别求得可能成立选项,从而得到答案.
解答:解:∵f(x)=3-x-ln
2x+1
=
1
3x
-ln
2x+1
(x>-
1
2

∵0<a<b<c,且 f(a)f(b)f(c)<0,
∴f(a)、f(b)、f(c)中一项为负的、两项为正的;或者三项都是负的.
即f(c)<0,0<f(b)<f(a);或f(a)<f(b)<f(c)<0.
由于实数x0是函数y=f(x)的一个零点,
当f(c)<0,0<f(b)<f(a)时,b<x0<c,此时B,D成立.
当f(a)<f(b)<f(c)<0时,x0<a,此时A成立.
综上可得,C不可能成立,
故选C;
点评:本题主要考查函数的零点的定义,判断函数的零点所在的区间的方法,体现了分类讨论的数学思想,属于中档题;
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网