题目内容
已知f(x)=2+log3x,x∈[1,9],求y=[f(x)]2+f(x2)的最大值及y取最大值时x的值.
答案:
解析:
解析:
思路分析:要求函数y=[f(x)]2+f(x2)的最大值,要做两件事,一是要求其表达式;二是要求出它的定义域,然后求值域. 解:∵f(x)=2+log3x, ∴y=[f(x)]2+f(x2)=(2+log3x)2+2+log =(2+log3x)2+2+2log3x =log32x+6log3x+6 =(log3x+3)2-3. ∵函数f(x)的定义域为[1,9], ∴要使函数y=[f(x)]2+f(x2)有定义,就需 ∴1≤x≤3.∴0≤log3x≤1. ∴6≤y=(log3x+3)2-3≤13. ∴当x=3时,函数y=[f(x)]2+f(x2)取最大值13. 说明:本例正确求解的关键是:函数y=[f(x)]2+f(x2)定义域的正确确定.如果我们误认为[1,9]是它的定义域,则将求得错误的最大值22. 其实我们还能求出函数y=[f(x)]2+f(x2)的值域为[6,13]. |
练习册系列答案
相关题目