题目内容

.(本题满分15分)

已知四点。点在抛物线

(Ⅰ) 当时,延长交抛物线于另一点,求的大小;

 (Ⅱ) 当点在抛物线上运动时,

ⅰ)以为直径作圆,求该圆截直线所得的弦长;

ⅱ)过点轴的垂线交轴于点,过点作该抛物线的切线轴于点。问:是否总有?如果有,请给予证明;如果没有,请举出反例。

 

 

【答案】

(Ⅰ) 当时,

直线代入,得

所以

所以                                     ……………5分

 (Ⅱ) ⅰ)以为直径的圆的圆心为

所以圆的半径

圆心到直线的距离

故截得的弦长         ……………10分

 

 

 (Ⅱ) 总有。……………11分

证明:

所以切线的方程为,即

,得,所以点的坐标为         ………………12分

到直线的距离为

下面求直线的方程

因为,所以直线的方程为

整理得

所以点到直线的距离为

所以

所以………………15分

 

【解析】略

 

练习册系列答案
相关题目

((本题满分15分)
某有奖销售将商品的售价提高120元后允许顾客有3次抽奖的机会,每次抽奖的方法是在已经设置并打开了程序的电脑上按“Enter”键,电脑将随机产生一个                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        1~6的整数数作为号码,若该号码是3的倍数则顾客获奖,每次中奖的奖金为100元,运用所学的知识说明这样的活动对商家是否有利。

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网