ÌâÄ¿ÄÚÈÝ
ÒÑÖªn´Î¶àÏîʽPn£¨x£©=a0xn+a1xn-1+¡+an-1x+an£®
Èç¹ûÔÚÒ»ÖÖËã·¨ÖУ¬¼ÆËãx0k£¨k=2£¬3£¬4£¬¡£¬n£©µÄÖµÐèÒªk-1´Î³Ë·¨£¬¼ÆËãP3£¨x0£©µÄÖµ¹²ÐèÒª9´ÎÔËË㣨6´Î³Ë·¨£¬3´Î¼Ó·¨£©£¬ÄÇô¼ÆËãPn£¨x0£©µÄÖµ¹²ÐèÒª______´ÎÔËË㣮
ÏÂÃæ¸ø³öÒ»ÖÖ¼õÉÙÔËËã´ÎÊýµÄËã·¨£ºP0£¨x0£©=a0£®Pn+1£¨x£©=xPn£¨x£©+ak+1£¨k=0£¬l£¬2£¬¡£¬n-1£©£®ÀûÓøÃËã·¨£¬¼ÆËãP3£¨x0£©µÄÖµ¹²ÐèÒª6´ÎÔËË㣬¼ÆËãPn£¨x0£©µÄÖµ¹²ÐèÒª______´ÎÔËË㣮
Èç¹ûÔÚÒ»ÖÖËã·¨ÖУ¬¼ÆËãx0k£¨k=2£¬3£¬4£¬¡£¬n£©µÄÖµÐèÒªk-1´Î³Ë·¨£¬¼ÆËãP3£¨x0£©µÄÖµ¹²ÐèÒª9´ÎÔËË㣨6´Î³Ë·¨£¬3´Î¼Ó·¨£©£¬ÄÇô¼ÆËãPn£¨x0£©µÄÖµ¹²ÐèÒª______´ÎÔËË㣮
ÏÂÃæ¸ø³öÒ»ÖÖ¼õÉÙÔËËã´ÎÊýµÄËã·¨£ºP0£¨x0£©=a0£®Pn+1£¨x£©=xPn£¨x£©+ak+1£¨k=0£¬l£¬2£¬¡£¬n-1£©£®ÀûÓøÃËã·¨£¬¼ÆËãP3£¨x0£©µÄÖµ¹²ÐèÒª6´ÎÔËË㣬¼ÆËãPn£¨x0£©µÄÖµ¹²ÐèÒª______´ÎÔËË㣮
ÔÚÀûÓó£¹æËã·¨¼ÆËã¶àÏîʽPn£¨x£©=a0xn+a1xn-1+¡+an-1x+anµÄֵʱ£¬
Ëãa0xnÏîÐèÒªn³Ë·¨£¬ÔòÔÚ¼ÆËãʱ¹²ÐèÒª³Ë·¨£ºn+£¨n-1£©+£¨n-2£©+¡+2+1=
´Î
ÐèÒª¼Ó·¨£ºn´Î£¬Ôò¼ÆËãPn£¨x0£©µÄÖµ¹²ÐèÒª
n£¨n+3£©´ÎÔËË㣮
ÔÚʹÓÃÇؾÅÉØËã·¨¼ÆËã¶àÏîʽPn£¨x£©=a0xn+a1xn-1+¡+an-1x+anµÄֵʱ£¬
¹²ÐèÒª³Ë·¨£ºn´Î
ÐèÒª¼Ó·¨£ºn´Î£¬Ôò¼ÆËãPn£¨x0£©µÄÖµ¹²ÐèÒª2nË㣮
¹Ê´ð°¸Îª£º
n£¨n+3£©£¬2n
Ëãa0xnÏîÐèÒªn³Ë·¨£¬ÔòÔÚ¼ÆËãʱ¹²ÐèÒª³Ë·¨£ºn+£¨n-1£©+£¨n-2£©+¡+2+1=
n(n+1) |
2 |
ÐèÒª¼Ó·¨£ºn´Î£¬Ôò¼ÆËãPn£¨x0£©µÄÖµ¹²ÐèÒª
1 |
2 |
ÔÚʹÓÃÇؾÅÉØËã·¨¼ÆËã¶àÏîʽPn£¨x£©=a0xn+a1xn-1+¡+an-1x+anµÄֵʱ£¬
¹²ÐèÒª³Ë·¨£ºn´Î
ÐèÒª¼Ó·¨£ºn´Î£¬Ôò¼ÆËãPn£¨x0£©µÄÖµ¹²ÐèÒª2nË㣮
¹Ê´ð°¸Îª£º
1 |
2 |
Á·Ï°²áϵÁдð°¸
Ïà¹ØÌâÄ¿