题目内容

数列的前项和为,且

(1)写出的递推关系式,并求,,的值;

(2)猜想关于的表达式,并用数学归纳法证明.

 

【答案】

(1)

(2)猜想,用数学归纳法证明:

【解析】

试题分析:(1)由得:

, .

可得

(2)由(1)可猜想,下面用数学归纳法证明:

(i) 当时,,猜想成立.

(ii)假设当时,成立,

则当时,

故当时,,猜想成立.

由(i)(ii)可得,对一切正整数都成立. 关于的表达式为.

考点:本题主要考查归纳推理及数学归纳法。

点评:中档题,在高考命题中,单独考查数学归纳法已不多见,但”归纳、猜想、证明”的思想方法,确实是一种重要的方法,因此,应注意熟练掌握。

 

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网