题目内容

过双曲线的右焦点F作双曲线在第一、第三象限的渐近线的垂线l,垂足为P,l与双曲线的左、右支的交点分别为A,B.
(1)求证:P在双曲线的右准线上;
(2)求双曲线离心率的取值范围.
【答案】分析:(1)先设出双曲线半焦距,求得渐近线方程,则可求得过F的垂线方程,联立方程求得焦点p的横坐标,推断出在右准线上
(2)根据直线l与双曲线左右支均有交点,判断出该双曲线与其在第一、三象限的渐近线l1必交于第三象限.即l1的斜率必大于l的斜率,进而推断出  整理后即可求得a和c的不等式关系,求得离心率的范围.
解答:解:(1)设双曲线半焦距为c,c>0,有F(c,0) 
该渐近线方程为y=-x,则过F的垂线为y=(x-c) 
联立方程组可解得  x=,即在右准线x=上.
(2)因为直线l与双曲线左右支均有交点,则该双曲线与其在第一、三象限的渐近线l1必交于第三象限.
所以l1的斜率必大于l的斜率,即  ,即b2 >a2,又b2=c2-a2
所以c2>2a2    
则离心率e=
点评:本题主要考查了双曲线的简单性质.涉及了双曲线方程中a,b和c的关系,渐近线问题,离心率问题等.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网